
-
Previous Article
A slacks-based model for dynamic data envelopment analysis
- JIMO Home
- This Issue
-
Next Article
A parallel water flow algorithm with local search for solving the quadratic assignment problem
Pricing options on investment project expansions under commodity price uncertainty
1. | Department of Mathematics & Statistics, Curtin University, GPO Box U1987, WA 6845, Australia |
2. | School of Mathematical & Software Sciences, Sichuan Normal University, Sichuan 610000, China |
In this work we develop PDE-based mathematical models for valuing real options on investment project expansions when the underlying commodity price follows a geometric Brownian motion. The models developed are of a similar form as the Black-Scholes model for pricing conventional European call options. However, unlike the Black-Scholes' model, the payoff conditions of the current models are determined by a PDE system. An upwind finite difference scheme is used for solving the models. Numerical experiments have been performed using two examples of pricing project expansion options in the mining industry to demonstrate that our models are able to produce financially meaningful numerical results for the two non-trivial test problems.
References:
[1] |
S. A. Abdel Sabour and R. Poulin, Valuing real capital investments using the least-squares Monte Carlo method, The Engineering Economist, 51 (2006), 141-160. Google Scholar |
[2] |
M. Bellalah, Irreversibility, Sunk costs and investment under uncertainty, R & D Management, 31 (2001), 115-126. Google Scholar |
[3] |
M. Bellalah, A reexamination of corporate risks under incomplete information, International Journal of Finance and Economics, 6 (2001), 41-58. Google Scholar |
[4] |
M. J. Brennan and E. S. Schwartz,
Finite difference methods and jump processes arising in the pricing of contingent claims, Journal of Financial and Quantitative Analysis, 13 (1978), 461-474.
doi: 10.2307/2330152. |
[5] |
M. J. Brennan and E. S. Schwartz,
Evaluating natural resource investments, The Journal of Business, 58 (1985), 135-157.
|
[6] |
W. Chen and S. Wang,
A finite difference method for pricing European and American options under a geometric Levy process, J. Ind. Mang. Optim., 11 (2015), 241-264.
|
[7] |
G. Cortazar, E. S. Schwartz and J. Casassus, Optimal exploration investments under price and geological-technical uncertainty: A real options model, R & D Management, 31 (2001), 181-189. Google Scholar |
[8] |
L. Costa, A. Gabriel and S. B. Suslick,
Estimating the volatility of mining projects considering price and operating cost uncertainties, Resources Policy, 31 (2006), 86-94.
doi: 10.1016/j.resourpol.2006.07.002. |
[9] |
A. K. Dixit and R. S. Pindyck,
The Options approach to capital investment, The Economic Impact of Knowledge, (1995), 325-340.
doi: 10.1016/B978-0-7506-7009-8.50024-0. |
[10] |
S. E. Fadugba, F. H. Adefolaju and O. H. Akindutire, On the stability and accuracy of finite difference method for options pricing, Mathematical Theory and Modeling, 2 (2012), 101-108. Google Scholar |
[11] |
R. Geske, The valuation of compound options, Journal of Financial Economics, 7 (1979), 63-81. Google Scholar |
[12] |
M. Haque, E. Topal and E. Lilford,
A numerical study for a mining project using real options valuation under commodity price uncertainty, Resources Policy, 39 (2014), 115-123.
doi: 10.1016/j.resourpol.2013.12.004. |
[13] |
Hartono, L. S. Jennings and S. Wang,
Iterative upwind finite difference method with completed Richardson extrapolation for state-constrained Hamilton-Jacobi-Bellman equations, Pacific J. of Optim., 12 (2016), 379-397.
|
[14] |
C. Hirsch, Numerical Computation of Internal and External Flows, John Wiley & Sons, 1990. Google Scholar |
[15] |
J. E. Hodder and H. E. Riggs, Pitfalls in evaluating risky projects, Harvard Business Reviews, 63 (1985), 128-135. Google Scholar |
[16] |
D. C. Lesmana and S. Wang,
An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation under transaction costs, Applied Mathematics and Computation, 219 (2013), 8811-8828.
doi: 10.1016/j.amc.2012.12.077. |
[17] |
D. C. Lesmana and S. Wang,
A numerical scheme for pricing American options with transaction costs under a jump diffusion process, J. Ind. Mang. Optim., 13 (2017), 1793-1813.
|
[18] |
W. Li and S. Wang,
Penalty approach to the HJB Equation arising in European stock option pricing with proportional transaction costs, Journal of Optimization Theory and Applications, 143 (2009), 279-293.
doi: 10.1007/s10957-009-9559-7. |
[19] |
W. Li and S. Wang,
Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme, J. Ind. Mang. Optim., 9 (2013), 365-389.
doi: 10.3934/jimo.2013.9.365. |
[20] |
W. Li and S. Wang,
Pricing European options with proportional transaction costs and stochastic volatility using a penalty approach and a finite volume scheme, Computers and Mathematics with Applications, 73 (2017), 2454-2469.
doi: 10.1016/j.camwa.2017.03.024. |
[21] |
A. Moel and P. Tufano, When are real options exercised? An empirical study of mine closings, Review of Financial Studies, 15 (2002), 35-64. Google Scholar |
[22] |
N. Moyen, M. Slade and R. Uppal, Valuing risk and flexibility-a comparison of methods, Resources Policy, 22 (1996), 63-74. Google Scholar |
[23] |
S. C. Myers,
Finance theory and financial strategy, Interfaces, 14 (1984), 126-137.
doi: 10.1287/inte.14.1.126. |
[24] |
L. Trigeorgis,
The nature of option interactions and the valuation of investments with multiple real options, Journal of Financial and Quantitative Analysis, 28 (1993), 1-20.
doi: 10.2307/2331148. |
[25] |
L. Trigeorgis, Real Options, Princeton Series in Applied Mathematics, The MIT Press, Princeton, NJ, 1996. Google Scholar |
[26] |
R. S. Varga,
Matrix Iterative Analysis, Prentice-Hall, Engelwood Cliffs, NJ, 1962. |
[27] |
S. Wang,
A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA J. Numer. Anal., 24 (2004), 699-720.
doi: 10.1093/imanum/24.4.699. |
[28] |
S. Wang, L. S. Jennings and K. L. Teo,
Numerical solution of Hamilton-Jacobi-Bellman equations by an upwind finite volume method, Journal of Global Optimization, 27 (2003), 177-192.
doi: 10.1023/A:1024980623095. |
[29] |
S. Wang, S. Zhang and Z. Fang,
A superconvergent fitted finite volume Method for Black-Scholes equations governing European and American option valuation, Numerical Methods For Partial Differential Equations, 31 (2015), 181-208.
doi: 10.1002/num.21941. |
[30] |
P. Wilmott, J. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1993. Google Scholar |
show all references
References:
[1] |
S. A. Abdel Sabour and R. Poulin, Valuing real capital investments using the least-squares Monte Carlo method, The Engineering Economist, 51 (2006), 141-160. Google Scholar |
[2] |
M. Bellalah, Irreversibility, Sunk costs and investment under uncertainty, R & D Management, 31 (2001), 115-126. Google Scholar |
[3] |
M. Bellalah, A reexamination of corporate risks under incomplete information, International Journal of Finance and Economics, 6 (2001), 41-58. Google Scholar |
[4] |
M. J. Brennan and E. S. Schwartz,
Finite difference methods and jump processes arising in the pricing of contingent claims, Journal of Financial and Quantitative Analysis, 13 (1978), 461-474.
doi: 10.2307/2330152. |
[5] |
M. J. Brennan and E. S. Schwartz,
Evaluating natural resource investments, The Journal of Business, 58 (1985), 135-157.
|
[6] |
W. Chen and S. Wang,
A finite difference method for pricing European and American options under a geometric Levy process, J. Ind. Mang. Optim., 11 (2015), 241-264.
|
[7] |
G. Cortazar, E. S. Schwartz and J. Casassus, Optimal exploration investments under price and geological-technical uncertainty: A real options model, R & D Management, 31 (2001), 181-189. Google Scholar |
[8] |
L. Costa, A. Gabriel and S. B. Suslick,
Estimating the volatility of mining projects considering price and operating cost uncertainties, Resources Policy, 31 (2006), 86-94.
doi: 10.1016/j.resourpol.2006.07.002. |
[9] |
A. K. Dixit and R. S. Pindyck,
The Options approach to capital investment, The Economic Impact of Knowledge, (1995), 325-340.
doi: 10.1016/B978-0-7506-7009-8.50024-0. |
[10] |
S. E. Fadugba, F. H. Adefolaju and O. H. Akindutire, On the stability and accuracy of finite difference method for options pricing, Mathematical Theory and Modeling, 2 (2012), 101-108. Google Scholar |
[11] |
R. Geske, The valuation of compound options, Journal of Financial Economics, 7 (1979), 63-81. Google Scholar |
[12] |
M. Haque, E. Topal and E. Lilford,
A numerical study for a mining project using real options valuation under commodity price uncertainty, Resources Policy, 39 (2014), 115-123.
doi: 10.1016/j.resourpol.2013.12.004. |
[13] |
Hartono, L. S. Jennings and S. Wang,
Iterative upwind finite difference method with completed Richardson extrapolation for state-constrained Hamilton-Jacobi-Bellman equations, Pacific J. of Optim., 12 (2016), 379-397.
|
[14] |
C. Hirsch, Numerical Computation of Internal and External Flows, John Wiley & Sons, 1990. Google Scholar |
[15] |
J. E. Hodder and H. E. Riggs, Pitfalls in evaluating risky projects, Harvard Business Reviews, 63 (1985), 128-135. Google Scholar |
[16] |
D. C. Lesmana and S. Wang,
An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation under transaction costs, Applied Mathematics and Computation, 219 (2013), 8811-8828.
doi: 10.1016/j.amc.2012.12.077. |
[17] |
D. C. Lesmana and S. Wang,
A numerical scheme for pricing American options with transaction costs under a jump diffusion process, J. Ind. Mang. Optim., 13 (2017), 1793-1813.
|
[18] |
W. Li and S. Wang,
Penalty approach to the HJB Equation arising in European stock option pricing with proportional transaction costs, Journal of Optimization Theory and Applications, 143 (2009), 279-293.
doi: 10.1007/s10957-009-9559-7. |
[19] |
W. Li and S. Wang,
Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme, J. Ind. Mang. Optim., 9 (2013), 365-389.
doi: 10.3934/jimo.2013.9.365. |
[20] |
W. Li and S. Wang,
Pricing European options with proportional transaction costs and stochastic volatility using a penalty approach and a finite volume scheme, Computers and Mathematics with Applications, 73 (2017), 2454-2469.
doi: 10.1016/j.camwa.2017.03.024. |
[21] |
A. Moel and P. Tufano, When are real options exercised? An empirical study of mine closings, Review of Financial Studies, 15 (2002), 35-64. Google Scholar |
[22] |
N. Moyen, M. Slade and R. Uppal, Valuing risk and flexibility-a comparison of methods, Resources Policy, 22 (1996), 63-74. Google Scholar |
[23] |
S. C. Myers,
Finance theory and financial strategy, Interfaces, 14 (1984), 126-137.
doi: 10.1287/inte.14.1.126. |
[24] |
L. Trigeorgis,
The nature of option interactions and the valuation of investments with multiple real options, Journal of Financial and Quantitative Analysis, 28 (1993), 1-20.
doi: 10.2307/2331148. |
[25] |
L. Trigeorgis, Real Options, Princeton Series in Applied Mathematics, The MIT Press, Princeton, NJ, 1996. Google Scholar |
[26] |
R. S. Varga,
Matrix Iterative Analysis, Prentice-Hall, Engelwood Cliffs, NJ, 1962. |
[27] |
S. Wang,
A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA J. Numer. Anal., 24 (2004), 699-720.
doi: 10.1093/imanum/24.4.699. |
[28] |
S. Wang, L. S. Jennings and K. L. Teo,
Numerical solution of Hamilton-Jacobi-Bellman equations by an upwind finite volume method, Journal of Global Optimization, 27 (2003), 177-192.
doi: 10.1023/A:1024980623095. |
[29] |
S. Wang, S. Zhang and Z. Fang,
A superconvergent fitted finite volume Method for Black-Scholes equations governing European and American option valuation, Numerical Methods For Partial Differential Equations, 31 (2015), 181-208.
doi: 10.1002/num.21941. |
[30] |
P. Wilmott, J. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1993. Google Scholar |



[1] |
Marjan Uddin, Hazrat Ali. Space-time kernel based numerical method for generalized Black-Scholes equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2905-2915. doi: 10.3934/dcdss.2020221 |
[2] |
Erik Ekström, Johan Tysk. A boundary point lemma for Black-Scholes type operators. Communications on Pure & Applied Analysis, 2006, 5 (3) : 505-514. doi: 10.3934/cpaa.2006.5.505 |
[3] |
Kais Hamza, Fima C. Klebaner. On nonexistence of non-constant volatility in the Black-Scholes formula. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 829-834. doi: 10.3934/dcdsb.2006.6.829 |
[4] |
Na Song, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. A real option approach for investment opportunity valuation. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1213-1235. doi: 10.3934/jimo.2016069 |
[5] |
Rehana Naz, Imran Naeem. Exact solutions of a Black-Scholes model with time-dependent parameters by utilizing potential symmetries. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2841-2851. doi: 10.3934/dcdss.2020122 |
[6] |
Junkee Jeon, Jehan Oh. (1+2)-dimensional Black-Scholes equations with mixed boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (2) : 699-714. doi: 10.3934/cpaa.2020032 |
[7] |
Ana F. Carazo, Ignacio Contreras, Trinidad Gómez, Fátima Pérez. A project portfolio selection problem in a group decision-making context. Journal of Industrial & Management Optimization, 2012, 8 (1) : 243-261. doi: 10.3934/jimo.2012.8.243 |
[8] |
Rodrigue Gnitchogna Batogna, Abdon Atangana. Generalised class of Time Fractional Black Scholes equation and numerical analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 435-445. doi: 10.3934/dcdss.2019028 |
[9] |
Junkee Jeon, Jehan Oh. Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 755-781. doi: 10.3934/dcdsb.2018206 |
[10] |
Qing-Qing Yang, Wai-Ki Ching, Wan-Hua He, Na Song. Effect of institutional deleveraging on option valuation problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020060 |
[11] |
Giorgio Calcagnini, Edgar J. Sanchez Carrera, Giuseppe Travaglini. Real option value and poverty trap. Journal of Dynamics & Games, 2020, 7 (4) : 317-333. doi: 10.3934/jdg.2020025 |
[12] |
F. Zeyenp Sargut, H. Edwin Romeijn. Capacitated requirements planning with pricing flexibility and general cost and revenue functions. Journal of Industrial & Management Optimization, 2007, 3 (1) : 87-98. doi: 10.3934/jimo.2007.3.87 |
[13] |
Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial & Management Optimization, 2020, 16 (1) : 387-396. doi: 10.3934/jimo.2018158 |
[14] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[15] |
G.S. Liu, J.Z. Zhang. Decision making of transportation plan, a bilevel transportation problem approach. Journal of Industrial & Management Optimization, 2005, 1 (3) : 305-314. doi: 10.3934/jimo.2005.1.305 |
[16] |
Ruiyue Lin, Zhiping Chen, Zongxin Li. A new approach for allocating fixed costs among decision making units. Journal of Industrial & Management Optimization, 2016, 12 (1) : 211-228. doi: 10.3934/jimo.2016.12.211 |
[17] |
Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad. Optimizing multi-objective decision making having qualitative evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 747-762. doi: 10.3934/jimo.2015.11.747 |
[18] |
Naziya Parveen, Prakash N. Kamble. An extension of TOPSIS for group decision making in intuitionistic fuzzy environment. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021002 |
[19] |
Fazlollah Soleymani, Ali Akgül. European option valuation under the Bates PIDE in finance: A numerical implementation of the Gaussian scheme. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 889-909. doi: 10.3934/dcdss.2020052 |
[20] |
Ximin Huang, Na Song, Wai-Ki Ching, Tak-Kuen Siu, Ka-Fai Cedric Yiu. A real option approach to optimal inventory management of retail products. Journal of Industrial & Management Optimization, 2012, 8 (2) : 379-389. doi: 10.3934/jimo.2012.8.379 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]