
-
Previous Article
Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales
- JIMO Home
- This Issue
-
Next Article
Pricing options on investment project expansions under commodity price uncertainty
A slacks-based model for dynamic data envelopment analysis
Department of Mathematics, Tafresh University, Tafresh, 3951879611, Iran |
Dynamic Data Envelopment Analysis (DDEA) deals with efficiency analysis of decision making units in time dependent situations. A finite number of time periods and some carry-over activities between each two consecutive periods are assumed in DDEA. There are many models in DEA for efficiency evaluation of decision making units over time periods. One important class of dynamic models is the class of slacks-based models. By using a numerical example we show that some slacks-based DDEA models, especially ones proposed by Tone and Tsutsui, suffer from efficiency overestimation. A new dynamic slacks-based DEA model is proposed to overcome the deficiencies of the available slacks-based models. The model proposed in this paper is capable of revealing all sources of inefficiencies and providing more discrimination between decision making units. The theoretical and practical examinations demonstrate the merits of the new model.
References:
[1] |
A. Charnes, W. W. Cooper and E. Rhodes,
Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.
doi: 10.1016/0377-2217(78)90138-8. |
[2] |
W. W. Cooper, L. M. Seiford and K. Tone,
Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-solver Software, 2nd edition, Springer-Verlag, New York, 2007.
doi: 10.1007/978-0-387-45283-8. |
[3] |
D. K. Despotis, D. Sotiros and G. Koronakos,
A network DEA approach for series multi-stage processes, Omega, 61 (2016), 35-48.
doi: 10.1016/j.omega.2015.07.005. |
[4] |
A. Emrouznejad and E. Thanassoulis,
A mathematical model for dynamic efficiency using data envelopment analysis, Applied Mathematics and Computation, 160 (2005), 363-378.
doi: 10.1016/j.amc.2003.09.026. |
[5] |
R. Färe, S. Grosskopf, C. A. K. Lovell and C. Pasurka,
Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach, The Review of Economics and Statistics, 71 (1989), 90-98.
doi: 10.2307/1928055. |
[6] |
R. Färe and S. Grosskopf,
Intertemporal Production Frontiers: With Dynamic DEA, Springer-Verlag, Netherlands, 1996.
doi: 10.1007/978-94-009-1816-0. |
[7] |
R. Färe, S. Grosskopf, M. Norris and Z. Zhang, Productivity growth, technical progress, and efficiency change in industrialized countries, The American Economic Review, 84 (1994), 66-83. Google Scholar |
[8] |
H. Fukuyama and W. L. Weber,
Measuring Japanese bank performance: A dynamic network DEA approach, Journal of Productivity Analysis, 44 (2015), 249-264.
doi: 10.1007/s11123-014-0403-1. |
[9] |
S. Hung, D. He and W. Lu,
Evaluating the dynamic performances of business groups from the carry-over perspective: A case study of Taiwan's semiconductor industry, Omega, 46 (2014), 1-10.
doi: 10.1016/j.omega.2014.01.003. |
[10] |
C. Kao,
Dynamic data envelopment analysis: A relational analysis, European Journal of Operational Research, 227 (2013), 325-330.
doi: 10.1016/j.ejor.2012.12.012. |
[11] |
C. Kao and S. Hwang,
Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan, European Journal of Operational Research, 185 (2008), 418-429.
doi: 10.1016/j.ejor.2006.11.041. |
[12] |
G. A. Klopp, The Analysis of the Efficiency of Production System with Multiple Inputs and Outputs, Ph. D thesis, Industrial and System Engineering College, University of Illinois in Chicago, 1985. Google Scholar |
[13] |
L. Liang, W. D. Cook and J. Zhu,
DEA models for two-stage processes: Game approach and efficiency decomposition, Naval Research Logistics, 55 (2008), 643-653.
doi: 10.1002/nav.20308. |
[14] |
P. Moreno and S. Lozano,
Super SBI Dynamic Network DEA approach to measuring efficiency in the provision of public services, International Transactions in Operational Research, 25 (2018), 715-735.
doi: 10.1111/itor.12257. |
[15] |
J. Nemoto and M. Goto,
Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies, Economic Letters, 64 (1999), 51-56.
doi: 10.1016/S0165-1765(99)00070-1. |
[16] |
J. Nemoto and M. Goto,
Measuring dynamic efficiency in production: an application of data envelopment analysis to Japanese electric utilities, Journal of Productivity Analysis, 19 (2003), 191-210.
doi: 10.1023/A:1022805500570. |
[17] |
H. Omrani and E. Soltanzadeh,
Dynamic DEA models with network structure: An application for Iranian airlines, Journal of Air Transport Management, 57 (2016), 52-61.
doi: 10.1016/j.jairtraman.2016.07.014. |
[18] |
K. S. Park and K. Park,
Measurement of multiperiod aggregative efficiency, European Journal of Operational Research, 193 (2009), 567-580.
doi: 10.1016/j.ejor.2007.11.028. |
[19] |
H. Scheel,
Undesirable outputs in efficiency valuations, European Journal of Operational Research, 132 (2001), 400-410.
doi: 10.1016/S0377-2217(00)00160-0. |
[20] |
J. K. Sengupta,
A dynamic efficiency model using data envelopment analysis, International Journal of Production Economics, 62 (1999), 209-218.
doi: 10.1016/S0925-5273(98)00244-8. |
[21] |
M. Shafiee, M. Sangi and M. Ghaderi,
Bank performance evaluation using dynamic DEA: A slacks-based measure approach, Journal of Data Envelopment Analysis and Decision Science, 2013 (2013), 1-12.
doi: 10.5899/2013/dea-00026. |
[22] |
M. Soleimani-damaneh,
An effective computational attempt in DDEA, Applied Mathematical Modelling, 33 (2009), 3943-3948.
doi: 10.1016/j.apm.2009.01.013. |
[23] |
T. Sueyoshi and K. Sekitani,
Returns to scale in dynamic DEA, European Journal of Operational Research, 161 (2005), 536-544.
doi: 10.1016/j.ejor.2003.08.055. |
[24] |
K. Tone,
A slacks-based measure of efficiency in data envelopment analysis, European Journal of Operational Research, 130 (2001), 498-509.
doi: 10.1016/S0377-2217(99)00407-5. |
[25] |
K. Tone and M. Tsutsui,
Dynamic DEA: A slacks-based measure approach, Omega, 38 (2010), 145-156.
doi: 10.1016/j.omega.2009.07.003. |
[26] |
K. Tone and M. Tsutsui,
Dynamic DEA with network structure: A slacks-based measure approach, Omega, 42 (2014), 124-131.
doi: 10.1016/j.omega.2013.04.002. |
show all references
References:
[1] |
A. Charnes, W. W. Cooper and E. Rhodes,
Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.
doi: 10.1016/0377-2217(78)90138-8. |
[2] |
W. W. Cooper, L. M. Seiford and K. Tone,
Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-solver Software, 2nd edition, Springer-Verlag, New York, 2007.
doi: 10.1007/978-0-387-45283-8. |
[3] |
D. K. Despotis, D. Sotiros and G. Koronakos,
A network DEA approach for series multi-stage processes, Omega, 61 (2016), 35-48.
doi: 10.1016/j.omega.2015.07.005. |
[4] |
A. Emrouznejad and E. Thanassoulis,
A mathematical model for dynamic efficiency using data envelopment analysis, Applied Mathematics and Computation, 160 (2005), 363-378.
doi: 10.1016/j.amc.2003.09.026. |
[5] |
R. Färe, S. Grosskopf, C. A. K. Lovell and C. Pasurka,
Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach, The Review of Economics and Statistics, 71 (1989), 90-98.
doi: 10.2307/1928055. |
[6] |
R. Färe and S. Grosskopf,
Intertemporal Production Frontiers: With Dynamic DEA, Springer-Verlag, Netherlands, 1996.
doi: 10.1007/978-94-009-1816-0. |
[7] |
R. Färe, S. Grosskopf, M. Norris and Z. Zhang, Productivity growth, technical progress, and efficiency change in industrialized countries, The American Economic Review, 84 (1994), 66-83. Google Scholar |
[8] |
H. Fukuyama and W. L. Weber,
Measuring Japanese bank performance: A dynamic network DEA approach, Journal of Productivity Analysis, 44 (2015), 249-264.
doi: 10.1007/s11123-014-0403-1. |
[9] |
S. Hung, D. He and W. Lu,
Evaluating the dynamic performances of business groups from the carry-over perspective: A case study of Taiwan's semiconductor industry, Omega, 46 (2014), 1-10.
doi: 10.1016/j.omega.2014.01.003. |
[10] |
C. Kao,
Dynamic data envelopment analysis: A relational analysis, European Journal of Operational Research, 227 (2013), 325-330.
doi: 10.1016/j.ejor.2012.12.012. |
[11] |
C. Kao and S. Hwang,
Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan, European Journal of Operational Research, 185 (2008), 418-429.
doi: 10.1016/j.ejor.2006.11.041. |
[12] |
G. A. Klopp, The Analysis of the Efficiency of Production System with Multiple Inputs and Outputs, Ph. D thesis, Industrial and System Engineering College, University of Illinois in Chicago, 1985. Google Scholar |
[13] |
L. Liang, W. D. Cook and J. Zhu,
DEA models for two-stage processes: Game approach and efficiency decomposition, Naval Research Logistics, 55 (2008), 643-653.
doi: 10.1002/nav.20308. |
[14] |
P. Moreno and S. Lozano,
Super SBI Dynamic Network DEA approach to measuring efficiency in the provision of public services, International Transactions in Operational Research, 25 (2018), 715-735.
doi: 10.1111/itor.12257. |
[15] |
J. Nemoto and M. Goto,
Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies, Economic Letters, 64 (1999), 51-56.
doi: 10.1016/S0165-1765(99)00070-1. |
[16] |
J. Nemoto and M. Goto,
Measuring dynamic efficiency in production: an application of data envelopment analysis to Japanese electric utilities, Journal of Productivity Analysis, 19 (2003), 191-210.
doi: 10.1023/A:1022805500570. |
[17] |
H. Omrani and E. Soltanzadeh,
Dynamic DEA models with network structure: An application for Iranian airlines, Journal of Air Transport Management, 57 (2016), 52-61.
doi: 10.1016/j.jairtraman.2016.07.014. |
[18] |
K. S. Park and K. Park,
Measurement of multiperiod aggregative efficiency, European Journal of Operational Research, 193 (2009), 567-580.
doi: 10.1016/j.ejor.2007.11.028. |
[19] |
H. Scheel,
Undesirable outputs in efficiency valuations, European Journal of Operational Research, 132 (2001), 400-410.
doi: 10.1016/S0377-2217(00)00160-0. |
[20] |
J. K. Sengupta,
A dynamic efficiency model using data envelopment analysis, International Journal of Production Economics, 62 (1999), 209-218.
doi: 10.1016/S0925-5273(98)00244-8. |
[21] |
M. Shafiee, M. Sangi and M. Ghaderi,
Bank performance evaluation using dynamic DEA: A slacks-based measure approach, Journal of Data Envelopment Analysis and Decision Science, 2013 (2013), 1-12.
doi: 10.5899/2013/dea-00026. |
[22] |
M. Soleimani-damaneh,
An effective computational attempt in DDEA, Applied Mathematical Modelling, 33 (2009), 3943-3948.
doi: 10.1016/j.apm.2009.01.013. |
[23] |
T. Sueyoshi and K. Sekitani,
Returns to scale in dynamic DEA, European Journal of Operational Research, 161 (2005), 536-544.
doi: 10.1016/j.ejor.2003.08.055. |
[24] |
K. Tone,
A slacks-based measure of efficiency in data envelopment analysis, European Journal of Operational Research, 130 (2001), 498-509.
doi: 10.1016/S0377-2217(99)00407-5. |
[25] |
K. Tone and M. Tsutsui,
Dynamic DEA: A slacks-based measure approach, Omega, 38 (2010), 145-156.
doi: 10.1016/j.omega.2009.07.003. |
[26] |
K. Tone and M. Tsutsui,
Dynamic DEA with network structure: A slacks-based measure approach, Omega, 42 (2014), 124-131.
doi: 10.1016/j.omega.2013.04.002. |

DMUs | Average monthly salaries | Operating expense | Total loans | Net profit | Loan Losses | ||||||||||
t=1 | t=2 | t=3 | t=1 | t=2 | t=3 | t=1 | t=2 | t=3 | t=1 | t=2 | t=3 | t=1 | t=2 | t=3 | |
DMU1 | 2.828 | 2.705 | 3.775 | 27.55 | 35.25 | 50.43 | 40.01 | 49.85 | 54.38 | 57.95 | 58.85 | 66.64 | 12.41 | 7.88 | 7.4 |
DMU2 | 5.667 | 5.825 | 7.657 | 84.5 | 122 | 105.5 | 282.9 | 297.6 | 322.5 | 94.18 | 87.29 | 111.6 | 41.34 | 34.95 | 28.64 |
DMU3 | 6.23 | 6.32 | 8.899 | 183.6 | 159.5 | 170.8 | 184.5 | 191.4 | 188.4 | 103.7 | 120.5 | 121.6 | 28.44 | 22.71 | 21.41 |
DMU4 | 5.577 | 5.532 | 7.552 | 122.7 | 94.48 | 94.97 | 195.9 | 200.5 | 202.2 | 58.98 | 58.42 | 58.25 | 22.8 | 25.68 | 26.69 |
DMU5 | 3.864 | 4.526 | 5.72 | 57.19 | 38.43 | 40.27 | 106.2 | 102.9 | 98.36 | 32.41 | 42.5 | 48.91 | 8.51 | 6.25 | 8.93 |
DMU6 | 4.696 | 4.601 | 6.196 | 72.07 | 2.64 | 3.41 | 175.5 | 176.1 | 190.7 | 60.7 | 58.88 | 47.68 | 10.35 | 11.89 | 10.22 |
DMU7 | 3.582 | 3.108 | 4.221 | 21.83 | 21.3 | 29.76 | 21.56 | 24.38 | 28.28 | 18.68 | 19.17 | 19.42 | 1.91 | 1.24 | 2.02 |
DMU8 | 5.395 | 5.522 | 7.139 | 63.85 | 56.14 | 49 | 133 | 147.1 | 156.8 | 76.77 | 99.79 | 100.9 | 30.49 | 21.06 | 18.07 |
DMU9 | 7.761 | 7.522 | 10.746 | 27.93 | 34.4 | 31.14 | 872.9 | 815.4 | 803.3 | 314.7 | 312.8 | 31.21 | 80.96 | 119.5 | 115.5 |
DMU10 | 3.748 | 3.593 | 5.138 | 59.99 | 96.5 | 60.43 | 113.7 | 121.6 | 122.9 | 72.64 | 84.51 | 81.45 | 7.33 | 3.28 | 13.53 |
DMUs | Average monthly salaries | Operating expense | Total loans | Net profit | Loan Losses | ||||||||||
t=1 | t=2 | t=3 | t=1 | t=2 | t=3 | t=1 | t=2 | t=3 | t=1 | t=2 | t=3 | t=1 | t=2 | t=3 | |
DMU1 | 2.828 | 2.705 | 3.775 | 27.55 | 35.25 | 50.43 | 40.01 | 49.85 | 54.38 | 57.95 | 58.85 | 66.64 | 12.41 | 7.88 | 7.4 |
DMU2 | 5.667 | 5.825 | 7.657 | 84.5 | 122 | 105.5 | 282.9 | 297.6 | 322.5 | 94.18 | 87.29 | 111.6 | 41.34 | 34.95 | 28.64 |
DMU3 | 6.23 | 6.32 | 8.899 | 183.6 | 159.5 | 170.8 | 184.5 | 191.4 | 188.4 | 103.7 | 120.5 | 121.6 | 28.44 | 22.71 | 21.41 |
DMU4 | 5.577 | 5.532 | 7.552 | 122.7 | 94.48 | 94.97 | 195.9 | 200.5 | 202.2 | 58.98 | 58.42 | 58.25 | 22.8 | 25.68 | 26.69 |
DMU5 | 3.864 | 4.526 | 5.72 | 57.19 | 38.43 | 40.27 | 106.2 | 102.9 | 98.36 | 32.41 | 42.5 | 48.91 | 8.51 | 6.25 | 8.93 |
DMU6 | 4.696 | 4.601 | 6.196 | 72.07 | 2.64 | 3.41 | 175.5 | 176.1 | 190.7 | 60.7 | 58.88 | 47.68 | 10.35 | 11.89 | 10.22 |
DMU7 | 3.582 | 3.108 | 4.221 | 21.83 | 21.3 | 29.76 | 21.56 | 24.38 | 28.28 | 18.68 | 19.17 | 19.42 | 1.91 | 1.24 | 2.02 |
DMU8 | 5.395 | 5.522 | 7.139 | 63.85 | 56.14 | 49 | 133 | 147.1 | 156.8 | 76.77 | 99.79 | 100.9 | 30.49 | 21.06 | 18.07 |
DMU9 | 7.761 | 7.522 | 10.746 | 27.93 | 34.4 | 31.14 | 872.9 | 815.4 | 803.3 | 314.7 | 312.8 | 31.21 | 80.96 | 119.5 | 115.5 |
DMU10 | 3.748 | 3.593 | 5.138 | 59.99 | 96.5 | 60.43 | 113.7 | 121.6 | 122.9 | 72.64 | 84.51 | 81.45 | 7.33 | 3.28 | 13.53 |
Overall input-oriented efficiency | Overall output-oriented efficiency | Non-oriented combined efficiency | |||||
DMUs | Model (16) with TT objective: |
||||||
DMU1 | 0.9194 | 0.8792 | 0.6771 | 0.7587 | 0.6771 | 0.6225 | 0.6671 |
DMU2 | 1 | 0.7040 | 1 | 0.8458 | 0.7492 | 1 | 0.5954 |
DMU3 | 0.6521 | 0.4735 | 0.7618 | 0.7959 | 0.7230 | 0.4968 | 0.3761 |
DMU4 | 0.5133 | 0.6773 | 0.5840 | 0.7117 | 0.5456 | 0.2998 | 0.4821 |
DMU5 | 0.7648 | 0.7614 | 0.7916 | 0.8100 | 0.7286 | 0.6054 | 0.6168 |
DMU6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
DMU7 | 0.8854 | 0.6421 | 0.9409 | 0.8979 | 0.8700 | 0.8331 | 0.5766 |
DMU8 | 0.7765 | 0.7020 | 0.7482 | 0.7766 | 0.6841 | 0.5810 | 0.5451 |
DMU9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
DMU10 | 1 | 0.5660 | 0.1 | 0.6979 | 0.9977 | 1 | 0.3950 |
Overall input-oriented efficiency | Overall output-oriented efficiency | Non-oriented combined efficiency | |||||
DMUs | Model (16) with TT objective: |
||||||
DMU1 | 0.9194 | 0.8792 | 0.6771 | 0.7587 | 0.6771 | 0.6225 | 0.6671 |
DMU2 | 1 | 0.7040 | 1 | 0.8458 | 0.7492 | 1 | 0.5954 |
DMU3 | 0.6521 | 0.4735 | 0.7618 | 0.7959 | 0.7230 | 0.4968 | 0.3761 |
DMU4 | 0.5133 | 0.6773 | 0.5840 | 0.7117 | 0.5456 | 0.2998 | 0.4821 |
DMU5 | 0.7648 | 0.7614 | 0.7916 | 0.8100 | 0.7286 | 0.6054 | 0.6168 |
DMU6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
DMU7 | 0.8854 | 0.6421 | 0.9409 | 0.8979 | 0.8700 | 0.8331 | 0.5766 |
DMU8 | 0.7765 | 0.7020 | 0.7482 | 0.7766 | 0.6841 | 0.5810 | 0.5451 |
DMU9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
DMU10 | 1 | 0.5660 | 0.1 | 0.6979 | 0.9977 | 1 | 0.3950 |
DMUs | Tone and Tsutsui's model | The proposed model | ||||
Period 1 efficiency | Period 2 efficiency | Period 3 efficiency | Period 1 efficiency | Period 2 efficiency | Period 3 efficiency | |
DMU1 | 0.7574 | 1 | 1 | 0.6364 | 1 | 1 |
DMU2 | 1 | 1 | 1 | 0.2769 | 0.8169 | 1 |
DMU3 | 0.5217 | 0.6987 | 0.7450 | 0.1962 | 0.4393 | 0.7247 |
DMU4 | 0.3887 | 0.6334 | 0.5324 | 0.1802 | 0.8321 | 1 |
DMU5 | 0.7047 | 0.8411 | 0.7477 | 0.5053 | 0.7744 | 1 |
DMU6 | 1 | 1 | 1 | 1 | 1 | 1 |
DMU7 | 0.6562 | 1 | 1 | 0.4236 | 0.5221 | 0.9991 |
DMU8 | 0.4524 | 0.8718 | 1 | 0.2319 | 0.8498 | 1 |
DMU9 | 1 | 1 | 1 | 1 | 1 | 1 |
DMU10 | 1 | 1 | 1 | 0.2602 | 0.8350 | 0.5901 |
DMUs | Tone and Tsutsui's model | The proposed model | ||||
Period 1 efficiency | Period 2 efficiency | Period 3 efficiency | Period 1 efficiency | Period 2 efficiency | Period 3 efficiency | |
DMU1 | 0.7574 | 1 | 1 | 0.6364 | 1 | 1 |
DMU2 | 1 | 1 | 1 | 0.2769 | 0.8169 | 1 |
DMU3 | 0.5217 | 0.6987 | 0.7450 | 0.1962 | 0.4393 | 0.7247 |
DMU4 | 0.3887 | 0.6334 | 0.5324 | 0.1802 | 0.8321 | 1 |
DMU5 | 0.7047 | 0.8411 | 0.7477 | 0.5053 | 0.7744 | 1 |
DMU6 | 1 | 1 | 1 | 1 | 1 | 1 |
DMU7 | 0.6562 | 1 | 1 | 0.4236 | 0.5221 | 0.9991 |
DMU8 | 0.4524 | 0.8718 | 1 | 0.2319 | 0.8498 | 1 |
DMU9 | 1 | 1 | 1 | 1 | 1 | 1 |
DMU10 | 1 | 1 | 1 | 0.2602 | 0.8350 | 0.5901 |
[1] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[2] |
Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2020056 |
[3] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[4] |
Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021038 |
[5] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[6] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[7] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[8] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[9] |
Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021013 |
[10] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[11] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[12] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[13] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[14] |
Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020134 |
[15] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[16] |
Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024 |
[17] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[18] |
Wei Wang, Degen Huang, Haitao Yu. Word sense disambiguation based on stretchable matching of the semantic template. Mathematical Foundations of Computing, 2021, 4 (1) : 1-13. doi: 10.3934/mfc.2020022 |
[19] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[20] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]