January  2019, 15(1): 275-291. doi: 10.3934/jimo.2018043

A slacks-based model for dynamic data envelopment analysis

Department of Mathematics, Tafresh University, Tafresh, 3951879611, Iran

* Corresponding author: Mohammad Afzalinejad

Received  May 2017 Revised  October 2017 Published  April 2018

Dynamic Data Envelopment Analysis (DDEA) deals with efficiency analysis of decision making units in time dependent situations. A finite number of time periods and some carry-over activities between each two consecutive periods are assumed in DDEA. There are many models in DEA for efficiency evaluation of decision making units over time periods. One important class of dynamic models is the class of slacks-based models. By using a numerical example we show that some slacks-based DDEA models, especially ones proposed by Tone and Tsutsui, suffer from efficiency overestimation. A new dynamic slacks-based DEA model is proposed to overcome the deficiencies of the available slacks-based models. The model proposed in this paper is capable of revealing all sources of inefficiencies and providing more discrimination between decision making units. The theoretical and practical examinations demonstrate the merits of the new model.

Citation: Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial & Management Optimization, 2019, 15 (1) : 275-291. doi: 10.3934/jimo.2018043
References:
[1]

A. CharnesW. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.  doi: 10.1016/0377-2217(78)90138-8.  Google Scholar

[2]

W. W. Cooper, L. M. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-solver Software, 2nd edition, Springer-Verlag, New York, 2007. doi: 10.1007/978-0-387-45283-8.  Google Scholar

[3]

D. K. DespotisD. Sotiros and G. Koronakos, A network DEA approach for series multi-stage processes, Omega, 61 (2016), 35-48.  doi: 10.1016/j.omega.2015.07.005.  Google Scholar

[4]

A. Emrouznejad and E. Thanassoulis, A mathematical model for dynamic efficiency using data envelopment analysis, Applied Mathematics and Computation, 160 (2005), 363-378.  doi: 10.1016/j.amc.2003.09.026.  Google Scholar

[5]

R. FäreS. GrosskopfC. A. K. Lovell and C. Pasurka, Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach, The Review of Economics and Statistics, 71 (1989), 90-98.  doi: 10.2307/1928055.  Google Scholar

[6]

R. Färe and S. Grosskopf, Intertemporal Production Frontiers: With Dynamic DEA, Springer-Verlag, Netherlands, 1996. doi: 10.1007/978-94-009-1816-0.  Google Scholar

[7]

R. FäreS. GrosskopfM. Norris and Z. Zhang, Productivity growth, technical progress, and efficiency change in industrialized countries, The American Economic Review, 84 (1994), 66-83.   Google Scholar

[8]

H. Fukuyama and W. L. Weber, Measuring Japanese bank performance: A dynamic network DEA approach, Journal of Productivity Analysis, 44 (2015), 249-264.  doi: 10.1007/s11123-014-0403-1.  Google Scholar

[9]

S. HungD. He and W. Lu, Evaluating the dynamic performances of business groups from the carry-over perspective: A case study of Taiwan's semiconductor industry, Omega, 46 (2014), 1-10.  doi: 10.1016/j.omega.2014.01.003.  Google Scholar

[10]

C. Kao, Dynamic data envelopment analysis: A relational analysis, European Journal of Operational Research, 227 (2013), 325-330.  doi: 10.1016/j.ejor.2012.12.012.  Google Scholar

[11]

C. Kao and S. Hwang, Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan, European Journal of Operational Research, 185 (2008), 418-429.  doi: 10.1016/j.ejor.2006.11.041.  Google Scholar

[12]

G. A. Klopp, The Analysis of the Efficiency of Production System with Multiple Inputs and Outputs, Ph. D thesis, Industrial and System Engineering College, University of Illinois in Chicago, 1985. Google Scholar

[13]

L. LiangW. D. Cook and J. Zhu, DEA models for two-stage processes: Game approach and efficiency decomposition, Naval Research Logistics, 55 (2008), 643-653.  doi: 10.1002/nav.20308.  Google Scholar

[14]

P. Moreno and S. Lozano, Super SBI Dynamic Network DEA approach to measuring efficiency in the provision of public services, International Transactions in Operational Research, 25 (2018), 715-735.  doi: 10.1111/itor.12257.  Google Scholar

[15]

J. Nemoto and M. Goto, Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies, Economic Letters, 64 (1999), 51-56.  doi: 10.1016/S0165-1765(99)00070-1.  Google Scholar

[16]

J. Nemoto and M. Goto, Measuring dynamic efficiency in production: an application of data envelopment analysis to Japanese electric utilities, Journal of Productivity Analysis, 19 (2003), 191-210.  doi: 10.1023/A:1022805500570.  Google Scholar

[17]

H. Omrani and E. Soltanzadeh, Dynamic DEA models with network structure: An application for Iranian airlines, Journal of Air Transport Management, 57 (2016), 52-61.  doi: 10.1016/j.jairtraman.2016.07.014.  Google Scholar

[18]

K. S. Park and K. Park, Measurement of multiperiod aggregative efficiency, European Journal of Operational Research, 193 (2009), 567-580.  doi: 10.1016/j.ejor.2007.11.028.  Google Scholar

[19]

H. Scheel, Undesirable outputs in efficiency valuations, European Journal of Operational Research, 132 (2001), 400-410.  doi: 10.1016/S0377-2217(00)00160-0.  Google Scholar

[20]

J. K. Sengupta, A dynamic efficiency model using data envelopment analysis, International Journal of Production Economics, 62 (1999), 209-218.  doi: 10.1016/S0925-5273(98)00244-8.  Google Scholar

[21]

M. ShafieeM. Sangi and M. Ghaderi, Bank performance evaluation using dynamic DEA: A slacks-based measure approach, Journal of Data Envelopment Analysis and Decision Science, 2013 (2013), 1-12.  doi: 10.5899/2013/dea-00026.  Google Scholar

[22]

M. Soleimani-damaneh, An effective computational attempt in DDEA, Applied Mathematical Modelling, 33 (2009), 3943-3948.  doi: 10.1016/j.apm.2009.01.013.  Google Scholar

[23]

T. Sueyoshi and K. Sekitani, Returns to scale in dynamic DEA, European Journal of Operational Research, 161 (2005), 536-544.  doi: 10.1016/j.ejor.2003.08.055.  Google Scholar

[24]

K. Tone, A slacks-based measure of efficiency in data envelopment analysis, European Journal of Operational Research, 130 (2001), 498-509.  doi: 10.1016/S0377-2217(99)00407-5.  Google Scholar

[25]

K. Tone and M. Tsutsui, Dynamic DEA: A slacks-based measure approach, Omega, 38 (2010), 145-156.  doi: 10.1016/j.omega.2009.07.003.  Google Scholar

[26]

K. Tone and M. Tsutsui, Dynamic DEA with network structure: A slacks-based measure approach, Omega, 42 (2014), 124-131.  doi: 10.1016/j.omega.2013.04.002.  Google Scholar

show all references

References:
[1]

A. CharnesW. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.  doi: 10.1016/0377-2217(78)90138-8.  Google Scholar

[2]

W. W. Cooper, L. M. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-solver Software, 2nd edition, Springer-Verlag, New York, 2007. doi: 10.1007/978-0-387-45283-8.  Google Scholar

[3]

D. K. DespotisD. Sotiros and G. Koronakos, A network DEA approach for series multi-stage processes, Omega, 61 (2016), 35-48.  doi: 10.1016/j.omega.2015.07.005.  Google Scholar

[4]

A. Emrouznejad and E. Thanassoulis, A mathematical model for dynamic efficiency using data envelopment analysis, Applied Mathematics and Computation, 160 (2005), 363-378.  doi: 10.1016/j.amc.2003.09.026.  Google Scholar

[5]

R. FäreS. GrosskopfC. A. K. Lovell and C. Pasurka, Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach, The Review of Economics and Statistics, 71 (1989), 90-98.  doi: 10.2307/1928055.  Google Scholar

[6]

R. Färe and S. Grosskopf, Intertemporal Production Frontiers: With Dynamic DEA, Springer-Verlag, Netherlands, 1996. doi: 10.1007/978-94-009-1816-0.  Google Scholar

[7]

R. FäreS. GrosskopfM. Norris and Z. Zhang, Productivity growth, technical progress, and efficiency change in industrialized countries, The American Economic Review, 84 (1994), 66-83.   Google Scholar

[8]

H. Fukuyama and W. L. Weber, Measuring Japanese bank performance: A dynamic network DEA approach, Journal of Productivity Analysis, 44 (2015), 249-264.  doi: 10.1007/s11123-014-0403-1.  Google Scholar

[9]

S. HungD. He and W. Lu, Evaluating the dynamic performances of business groups from the carry-over perspective: A case study of Taiwan's semiconductor industry, Omega, 46 (2014), 1-10.  doi: 10.1016/j.omega.2014.01.003.  Google Scholar

[10]

C. Kao, Dynamic data envelopment analysis: A relational analysis, European Journal of Operational Research, 227 (2013), 325-330.  doi: 10.1016/j.ejor.2012.12.012.  Google Scholar

[11]

C. Kao and S. Hwang, Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan, European Journal of Operational Research, 185 (2008), 418-429.  doi: 10.1016/j.ejor.2006.11.041.  Google Scholar

[12]

G. A. Klopp, The Analysis of the Efficiency of Production System with Multiple Inputs and Outputs, Ph. D thesis, Industrial and System Engineering College, University of Illinois in Chicago, 1985. Google Scholar

[13]

L. LiangW. D. Cook and J. Zhu, DEA models for two-stage processes: Game approach and efficiency decomposition, Naval Research Logistics, 55 (2008), 643-653.  doi: 10.1002/nav.20308.  Google Scholar

[14]

P. Moreno and S. Lozano, Super SBI Dynamic Network DEA approach to measuring efficiency in the provision of public services, International Transactions in Operational Research, 25 (2018), 715-735.  doi: 10.1111/itor.12257.  Google Scholar

[15]

J. Nemoto and M. Goto, Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies, Economic Letters, 64 (1999), 51-56.  doi: 10.1016/S0165-1765(99)00070-1.  Google Scholar

[16]

J. Nemoto and M. Goto, Measuring dynamic efficiency in production: an application of data envelopment analysis to Japanese electric utilities, Journal of Productivity Analysis, 19 (2003), 191-210.  doi: 10.1023/A:1022805500570.  Google Scholar

[17]

H. Omrani and E. Soltanzadeh, Dynamic DEA models with network structure: An application for Iranian airlines, Journal of Air Transport Management, 57 (2016), 52-61.  doi: 10.1016/j.jairtraman.2016.07.014.  Google Scholar

[18]

K. S. Park and K. Park, Measurement of multiperiod aggregative efficiency, European Journal of Operational Research, 193 (2009), 567-580.  doi: 10.1016/j.ejor.2007.11.028.  Google Scholar

[19]

H. Scheel, Undesirable outputs in efficiency valuations, European Journal of Operational Research, 132 (2001), 400-410.  doi: 10.1016/S0377-2217(00)00160-0.  Google Scholar

[20]

J. K. Sengupta, A dynamic efficiency model using data envelopment analysis, International Journal of Production Economics, 62 (1999), 209-218.  doi: 10.1016/S0925-5273(98)00244-8.  Google Scholar

[21]

M. ShafieeM. Sangi and M. Ghaderi, Bank performance evaluation using dynamic DEA: A slacks-based measure approach, Journal of Data Envelopment Analysis and Decision Science, 2013 (2013), 1-12.  doi: 10.5899/2013/dea-00026.  Google Scholar

[22]

M. Soleimani-damaneh, An effective computational attempt in DDEA, Applied Mathematical Modelling, 33 (2009), 3943-3948.  doi: 10.1016/j.apm.2009.01.013.  Google Scholar

[23]

T. Sueyoshi and K. Sekitani, Returns to scale in dynamic DEA, European Journal of Operational Research, 161 (2005), 536-544.  doi: 10.1016/j.ejor.2003.08.055.  Google Scholar

[24]

K. Tone, A slacks-based measure of efficiency in data envelopment analysis, European Journal of Operational Research, 130 (2001), 498-509.  doi: 10.1016/S0377-2217(99)00407-5.  Google Scholar

[25]

K. Tone and M. Tsutsui, Dynamic DEA: A slacks-based measure approach, Omega, 38 (2010), 145-156.  doi: 10.1016/j.omega.2009.07.003.  Google Scholar

[26]

K. Tone and M. Tsutsui, Dynamic DEA with network structure: A slacks-based measure approach, Omega, 42 (2014), 124-131.  doi: 10.1016/j.omega.2013.04.002.  Google Scholar

Figure 1.  $DMU_{b}$ is dominated by $DMU_{a}$ and is not efficient.
Figure 2.  Comparison of rank order (input-oriented).
Table 1.  Data of 10 bank branches
DMUs Average monthly salaries Operating expense Total loans Net profit Loan Losses
t=1 t=2 t=3 t=1 t=2 t=3 t=1 t=2 t=3 t=1 t=2 t=3 t=1 t=2 t=3
DMU1 2.828 2.705 3.775 27.55 35.25 50.43 40.01 49.85 54.38 57.95 58.85 66.64 12.41 7.88 7.4
DMU2 5.667 5.825 7.657 84.5 122 105.5 282.9 297.6 322.5 94.18 87.29 111.6 41.34 34.95 28.64
DMU3 6.23 6.32 8.899 183.6 159.5 170.8 184.5 191.4 188.4 103.7 120.5 121.6 28.44 22.71 21.41
DMU4 5.577 5.532 7.552 122.7 94.48 94.97 195.9 200.5 202.2 58.98 58.42 58.25 22.8 25.68 26.69
DMU5 3.864 4.526 5.72 57.19 38.43 40.27 106.2 102.9 98.36 32.41 42.5 48.91 8.51 6.25 8.93
DMU6 4.696 4.601 6.196 72.07 2.64 3.41 175.5 176.1 190.7 60.7 58.88 47.68 10.35 11.89 10.22
DMU7 3.582 3.108 4.221 21.83 21.3 29.76 21.56 24.38 28.28 18.68 19.17 19.42 1.91 1.24 2.02
DMU8 5.395 5.522 7.139 63.85 56.14 49 133 147.1 156.8 76.77 99.79 100.9 30.49 21.06 18.07
DMU9 7.761 7.522 10.746 27.93 34.4 31.14 872.9 815.4 803.3 314.7 312.8 31.21 80.96 119.5 115.5
DMU10 3.748 3.593 5.138 59.99 96.5 60.43 113.7 121.6 122.9 72.64 84.51 81.45 7.33 3.28 13.53
DMUs Average monthly salaries Operating expense Total loans Net profit Loan Losses
t=1 t=2 t=3 t=1 t=2 t=3 t=1 t=2 t=3 t=1 t=2 t=3 t=1 t=2 t=3
DMU1 2.828 2.705 3.775 27.55 35.25 50.43 40.01 49.85 54.38 57.95 58.85 66.64 12.41 7.88 7.4
DMU2 5.667 5.825 7.657 84.5 122 105.5 282.9 297.6 322.5 94.18 87.29 111.6 41.34 34.95 28.64
DMU3 6.23 6.32 8.899 183.6 159.5 170.8 184.5 191.4 188.4 103.7 120.5 121.6 28.44 22.71 21.41
DMU4 5.577 5.532 7.552 122.7 94.48 94.97 195.9 200.5 202.2 58.98 58.42 58.25 22.8 25.68 26.69
DMU5 3.864 4.526 5.72 57.19 38.43 40.27 106.2 102.9 98.36 32.41 42.5 48.91 8.51 6.25 8.93
DMU6 4.696 4.601 6.196 72.07 2.64 3.41 175.5 176.1 190.7 60.7 58.88 47.68 10.35 11.89 10.22
DMU7 3.582 3.108 4.221 21.83 21.3 29.76 21.56 24.38 28.28 18.68 19.17 19.42 1.91 1.24 2.02
DMU8 5.395 5.522 7.139 63.85 56.14 49 133 147.1 156.8 76.77 99.79 100.9 30.49 21.06 18.07
DMU9 7.761 7.522 10.746 27.93 34.4 31.14 872.9 815.4 803.3 314.7 312.8 31.21 80.96 119.5 115.5
DMU10 3.748 3.593 5.138 59.99 96.5 60.43 113.7 121.6 122.9 72.64 84.51 81.45 7.33 3.28 13.53
Table 2.  Comparison of the efficiency scores resulted from Tone and Tsutsui's model and the proposed model.
Overall input-oriented efficiency Overall output-oriented efficiency Non-oriented combined efficiency
DMUs $ \theta^*_{o}(\text{TT})$ $ \theta^{*}_{o}$ $ \tau^{*}_{o}(\text{TT})$ $ \varphi^{*}_{o}$ Model (16) with TT objective: $ \varphi^{*}_{o}(\text{TT})$ $ \theta^{*}_{o}(\text{TT})\times\tau^{*}_{o}(TT)$ $ \theta^{*}_{o}\times\varphi^{*}_{o}$
DMU1 0.9194 0.8792 0.6771 0.7587 0.6771 0.6225 0.6671
DMU2 1 0.7040 1 0.8458 0.7492 1 0.5954
DMU3 0.6521 0.4735 0.7618 0.7959 0.7230 0.4968 0.3761
DMU4 0.5133 0.6773 0.5840 0.7117 0.5456 0.2998 0.4821
DMU5 0.7648 0.7614 0.7916 0.8100 0.7286 0.6054 0.6168
DMU6 1 1 1 1 1 1 1
DMU7 0.8854 0.6421 0.9409 0.8979 0.8700 0.8331 0.5766
DMU8 0.7765 0.7020 0.7482 0.7766 0.6841 0.5810 0.5451
DMU9 1 1 1 1 1 1 1
DMU10 1 0.5660 0.1 0.6979 0.9977 1 0.3950
Overall input-oriented efficiency Overall output-oriented efficiency Non-oriented combined efficiency
DMUs $ \theta^*_{o}(\text{TT})$ $ \theta^{*}_{o}$ $ \tau^{*}_{o}(\text{TT})$ $ \varphi^{*}_{o}$ Model (16) with TT objective: $ \varphi^{*}_{o}(\text{TT})$ $ \theta^{*}_{o}(\text{TT})\times\tau^{*}_{o}(TT)$ $ \theta^{*}_{o}\times\varphi^{*}_{o}$
DMU1 0.9194 0.8792 0.6771 0.7587 0.6771 0.6225 0.6671
DMU2 1 0.7040 1 0.8458 0.7492 1 0.5954
DMU3 0.6521 0.4735 0.7618 0.7959 0.7230 0.4968 0.3761
DMU4 0.5133 0.6773 0.5840 0.7117 0.5456 0.2998 0.4821
DMU5 0.7648 0.7614 0.7916 0.8100 0.7286 0.6054 0.6168
DMU6 1 1 1 1 1 1 1
DMU7 0.8854 0.6421 0.9409 0.8979 0.8700 0.8331 0.5766
DMU8 0.7765 0.7020 0.7482 0.7766 0.6841 0.5810 0.5451
DMU9 1 1 1 1 1 1 1
DMU10 1 0.5660 0.1 0.6979 0.9977 1 0.3950
Table 3.  The input-oriented period efficiency scores resulted from the TT model and the proposed model
DMUs Tone and Tsutsui's model The proposed model
Period 1 efficiency Period 2 efficiency Period 3 efficiency Period 1 efficiency Period 2 efficiency Period 3 efficiency
DMU1 0.7574 1 1 0.6364 1 1
DMU2 1 1 1 0.2769 0.8169 1
DMU3 0.5217 0.6987 0.7450 0.1962 0.4393 0.7247
DMU4 0.3887 0.6334 0.5324 0.1802 0.8321 1
DMU5 0.7047 0.8411 0.7477 0.5053 0.7744 1
DMU6 1 1 1 1 1 1
DMU7 0.6562 1 1 0.4236 0.5221 0.9991
DMU8 0.4524 0.8718 1 0.2319 0.8498 1
DMU9 1 1 1 1 1 1
DMU10 1 1 1 0.2602 0.8350 0.5901
DMUs Tone and Tsutsui's model The proposed model
Period 1 efficiency Period 2 efficiency Period 3 efficiency Period 1 efficiency Period 2 efficiency Period 3 efficiency
DMU1 0.7574 1 1 0.6364 1 1
DMU2 1 1 1 0.2769 0.8169 1
DMU3 0.5217 0.6987 0.7450 0.1962 0.4393 0.7247
DMU4 0.3887 0.6334 0.5324 0.1802 0.8321 1
DMU5 0.7047 0.8411 0.7477 0.5053 0.7744 1
DMU6 1 1 1 1 1 1
DMU7 0.6562 1 1 0.4236 0.5221 0.9991
DMU8 0.4524 0.8718 1 0.2319 0.8498 1
DMU9 1 1 1 1 1 1
DMU10 1 1 1 0.2602 0.8350 0.5901
[1]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[2]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[3]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[4]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[5]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[8]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[9]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[10]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[11]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[12]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[13]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[14]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024

[17]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[18]

Wei Wang, Degen Huang, Haitao Yu. Word sense disambiguation based on stretchable matching of the semantic template. Mathematical Foundations of Computing, 2021, 4 (1) : 1-13. doi: 10.3934/mfc.2020022

[19]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[20]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (268)
  • HTML views (1773)
  • Cited by (0)

Other articles
by authors

[Back to Top]