
-
Previous Article
RETRACTION: Peng Zhang, Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection
- JIMO Home
- This Issue
-
Next Article
Exclusion sets in the Δ-type eigenvalue inclusion set for tensors
Optimal threshold strategies with capital injections in a spectrally negative Lévy risk model
1. | College of Economics and Business Administration, Chongqing University, Chongqing 400030, China |
2. | Department of Mathematics, Wayne State University, MI, USA, 48202 |
This paper focuses on optimal threshold strategies for a spectrally negative Lévy (SNL) risk process with capital injections and proportional transaction costs. Restricted to solvency constraint, our model requires the shareholders of dividends prevent ruin by injecting capitals. Value function of the firm is assumed to be an expected discounted total [dividends less discounted capital injection]. Under such a setup, we derive certain key identities in connection with value function of the firm of a maximum dividend rate. Under restricted dividend rates and capital injection, we give analytical description of the maximum value function of the firm and the optimal threshold strategy explicitly.
References:
[1] |
H. Albrecher, J. Hartinger and S. Thonhauser,
On exact solutions for dividend strategies of threshold and linear barrier type in a Sparre Andersen model, ASTIN Bull., 37 (2007), 203-233.
doi: 10.1017/S0515036100014847. |
[2] |
S. Asmussen, Applied Probability and Queues, World Scientific, 2003, |
[3] |
S. Asmussen and M. Taksar,
Controlled diffusion models for optimal dividend pay-out, Insurance Math. Econom., 20 (1997), 1-15.
doi: 10.1016/S0167-6687(96)00017-0. |
[4] |
B. Avanzi, J. Shen and B. Wong,
Optimal dividends and capital injections in the dual model with diffusion, ASTIN Bull., 41 (2011), 611-644.
|
[5] |
F. Avram, Z. Palmowski and M. R. Pistorius,
On the optimal dividend problem for a SNLP, Ann. Appl. Prob., 17 (2007), 156-180.
doi: 10.1214/105051606000000709. |
[6] |
J. Bertoin, Lévy Processes, Cambridge University Press, 1996. |
[7] |
T. Chan, A. E. Kyprianou and M. Savov,
Smoothness of scale functions for spectrally negative Lévy processes, Probab. Theory Relat. Fields, 150 (2011), 691-708.
doi: 10.1007/s00440-010-0289-4. |
[8] |
H. S. Dai, Z. M. Liu and N. Luan,
Optimal dividend strategies in a dual model with capital injections, Math. Meth. Oper. Res., 72 (2010), 129-143.
doi: 10.1007/s00186-010-0312-7. |
[9] |
H. Gerber and E. Shiu,
On optimal dividend strategies in the compound poisson model, North American Actuarial J., 10 (2006), 76-93.
doi: 10.1080/10920277.2006.10596249. |
[10] |
H. Gerber and E. Shiu,
On optimal dividends: from reflection to refraction, J.Comput. Appl. Math., 186 (2006), 4-22.
doi: 10.1016/j.cam.2005.03.062. |
[11] |
J. M. Harrison and A. J. Taylor,
Optimal control of a Brownian storage system, Stoch. Process. Appl., 6 (1978), 179-194.
|
[12] |
M. Jeanblanc-Picqué and A. N. Shiryaev,
Optimization of the flow of dividends, Russian Math. Surveys, 50 (1995), 257-277.
|
[13] |
N. Kulenko and H. Schmidli,
Optimal dividend strategies in a Cramer-Lundberg model with capital injections, Insurance Math. Econom., 43 (2008), 270-278.
doi: 10.1016/j.insmatheco.2008.05.013. |
[14] |
A. E. Kyprianou and R. L. Loeffen,
Refracted Lévy processes, Annales de l'Instut Henri Poincaré, 46 (2010), 24-44.
doi: 10.1214/08-AIHP307. |
[15] |
A. E. Kyprianou, V. Rivero and R. Song,
Convexity and smoothness of scale functions and de Finetti's control problem, J. Th. Probab., 23 (2010), 547-564.
doi: 10.1007/s10959-009-0220-z. |
[16] |
A. E. Kyprianou and F. Hubalek,
Old, new examples of scale functions for spectrally negative Lévy processes, Seminar on Stochastic Analysis, Random Fields and Applications VI Progress in Probability, 63 (2011), 119-145.
|
[17] |
A. E. Kyprianou, R. Loeffen and J. Perez,
Optimal control with absolutely continuous strategies for spectrally negative Lévy prcoesses, J. Appl. Probab., 49 (2012), 150-166.
doi: 10.1239/jap/1331216839. |
[18] |
A. E. Kyprianou, Fluctuations of Lévy Processes with Applications, 2nd ed. Springer, 2014. |
[19] |
A. Lambert,
Completely asymmetric Lévy processes confined in a finite interval, Ann. Inst. H. Poincaré Probab. Statist., 36 (2000), 251-274.
doi: 10.1016/S0246-0203(00)00126-6. |
[20] |
M. Li and G. Yin, Optimal threshold strategies with capital injections in a spectrally negative Lévy risk model, preprint, 2014. Google Scholar |
[21] |
X. S. Lin and K. P. Pavlova,
The compound Poisson risk midel with a threhsold dividend strategy, Insurance Math. Econom., 38 (2006), 57-80.
doi: 10.1016/j.insmatheco.2005.08.001. |
[22] |
R. L. Loeffen,
On optimality of the barrier strategy in de Finetti's dividend problem for spectrally negative Lévy processes, Ann. Appl. Probab., 18 (2008), 1669-1680.
doi: 10.1214/07-AAP504. |
[23] |
R. L. Loeffen,
An optimal dividends problem with a terminal value for spectrally negative Lévy processes with a completely monotone jump density, J. Appl. Probab., 46 (2009), 85-98.
doi: 10.1239/jap/1238592118. |
[24] |
R. L. Loeffen, J. F. Renaud and X. W. Zhou,
Occupation times of intervals until first passage times for spectrally negative Lévy processes, Stoch. Proc. Appl., 124 (2014), 1408-1435.
doi: 10.1016/j.spa.2013.11.005. |
[25] |
A. Løkka and M. Zervos,
Optimal dividend and issuance of equity policies in the presence of proportional costs, Insurance Math. Econom., 42 (2008), 954-961.
doi: 10.1016/j.insmatheco.2007.10.013. |
[26] |
A. C. Y. Ng,
On a dual model with a dividend threshold, Insurance Math. Econom., 44 (2009), 315-324.
doi: 10.1016/j.insmatheco.2008.11.011. |
[27] |
M. R. Pistorius,
On doubly reflected completely asymmetric Lévy processes, Stoch. Proc. Appl., 107 (2003), 131-143.
doi: 10.1016/S0304-4149(03)00049-8. |
[28] |
M. R. Pistorius,
On exit and ergodicity of the completely asymmetric Lévy process reflected at its infimum, J. Th. Probab., 17 (2004), 183-220.
doi: 10.1023/B:JOTP.0000020481.14371.37. |
[29] |
J. L. Pérez and K. Yamazakic,
On the refracted-reflected spectrally negative Lévy processes, Stochastic Process. Appl., 128 (2018), 306-331.
doi: 10.1016/j.spa.2017.03.024. |
[30] |
K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, 1999. |
[31] |
S. E. Shreve, J. P. Lehoczky and D. P. Gaver,
Optimal consumption for general diffusions with absorbing and refelecting barriers, SIAM J. Control Optim., 22 (1984), 55-75.
doi: 10.1137/0322005. |
[32] |
D. J. Yao, H. L. Yang and R. M. Wang,
Optimal risk and dividend control problem with fixed costs and salvage value: Variance premium principle, Economic Modelling, 37 (2014), 53-64.
doi: 10.1016/j.econmod.2013.10.026. |
[33] |
C.C. Yin and K.C. Yuen,
Optimality of the threshold dividend strategy for the compound Poisson model, Statistics and Probability Letters, 81 (2011), 1841-1846.
doi: 10.1016/j.spl.2011.07.022. |
[34] |
M. Zhou and K. C. Yuen,
Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle, Economic Modelling, 29 (2012), 198-207.
doi: 10.1016/j.econmod.2011.09.007. |
[35] |
J. X. Zhu and H. L. Yang,
Optimal financing and dividend distribution in a general diffusion model with regime switching, Advances in Applied Probability, 48 (2016), 406-422.
doi: 10.1017/apr.2016.7. |
show all references
References:
[1] |
H. Albrecher, J. Hartinger and S. Thonhauser,
On exact solutions for dividend strategies of threshold and linear barrier type in a Sparre Andersen model, ASTIN Bull., 37 (2007), 203-233.
doi: 10.1017/S0515036100014847. |
[2] |
S. Asmussen, Applied Probability and Queues, World Scientific, 2003, |
[3] |
S. Asmussen and M. Taksar,
Controlled diffusion models for optimal dividend pay-out, Insurance Math. Econom., 20 (1997), 1-15.
doi: 10.1016/S0167-6687(96)00017-0. |
[4] |
B. Avanzi, J. Shen and B. Wong,
Optimal dividends and capital injections in the dual model with diffusion, ASTIN Bull., 41 (2011), 611-644.
|
[5] |
F. Avram, Z. Palmowski and M. R. Pistorius,
On the optimal dividend problem for a SNLP, Ann. Appl. Prob., 17 (2007), 156-180.
doi: 10.1214/105051606000000709. |
[6] |
J. Bertoin, Lévy Processes, Cambridge University Press, 1996. |
[7] |
T. Chan, A. E. Kyprianou and M. Savov,
Smoothness of scale functions for spectrally negative Lévy processes, Probab. Theory Relat. Fields, 150 (2011), 691-708.
doi: 10.1007/s00440-010-0289-4. |
[8] |
H. S. Dai, Z. M. Liu and N. Luan,
Optimal dividend strategies in a dual model with capital injections, Math. Meth. Oper. Res., 72 (2010), 129-143.
doi: 10.1007/s00186-010-0312-7. |
[9] |
H. Gerber and E. Shiu,
On optimal dividend strategies in the compound poisson model, North American Actuarial J., 10 (2006), 76-93.
doi: 10.1080/10920277.2006.10596249. |
[10] |
H. Gerber and E. Shiu,
On optimal dividends: from reflection to refraction, J.Comput. Appl. Math., 186 (2006), 4-22.
doi: 10.1016/j.cam.2005.03.062. |
[11] |
J. M. Harrison and A. J. Taylor,
Optimal control of a Brownian storage system, Stoch. Process. Appl., 6 (1978), 179-194.
|
[12] |
M. Jeanblanc-Picqué and A. N. Shiryaev,
Optimization of the flow of dividends, Russian Math. Surveys, 50 (1995), 257-277.
|
[13] |
N. Kulenko and H. Schmidli,
Optimal dividend strategies in a Cramer-Lundberg model with capital injections, Insurance Math. Econom., 43 (2008), 270-278.
doi: 10.1016/j.insmatheco.2008.05.013. |
[14] |
A. E. Kyprianou and R. L. Loeffen,
Refracted Lévy processes, Annales de l'Instut Henri Poincaré, 46 (2010), 24-44.
doi: 10.1214/08-AIHP307. |
[15] |
A. E. Kyprianou, V. Rivero and R. Song,
Convexity and smoothness of scale functions and de Finetti's control problem, J. Th. Probab., 23 (2010), 547-564.
doi: 10.1007/s10959-009-0220-z. |
[16] |
A. E. Kyprianou and F. Hubalek,
Old, new examples of scale functions for spectrally negative Lévy processes, Seminar on Stochastic Analysis, Random Fields and Applications VI Progress in Probability, 63 (2011), 119-145.
|
[17] |
A. E. Kyprianou, R. Loeffen and J. Perez,
Optimal control with absolutely continuous strategies for spectrally negative Lévy prcoesses, J. Appl. Probab., 49 (2012), 150-166.
doi: 10.1239/jap/1331216839. |
[18] |
A. E. Kyprianou, Fluctuations of Lévy Processes with Applications, 2nd ed. Springer, 2014. |
[19] |
A. Lambert,
Completely asymmetric Lévy processes confined in a finite interval, Ann. Inst. H. Poincaré Probab. Statist., 36 (2000), 251-274.
doi: 10.1016/S0246-0203(00)00126-6. |
[20] |
M. Li and G. Yin, Optimal threshold strategies with capital injections in a spectrally negative Lévy risk model, preprint, 2014. Google Scholar |
[21] |
X. S. Lin and K. P. Pavlova,
The compound Poisson risk midel with a threhsold dividend strategy, Insurance Math. Econom., 38 (2006), 57-80.
doi: 10.1016/j.insmatheco.2005.08.001. |
[22] |
R. L. Loeffen,
On optimality of the barrier strategy in de Finetti's dividend problem for spectrally negative Lévy processes, Ann. Appl. Probab., 18 (2008), 1669-1680.
doi: 10.1214/07-AAP504. |
[23] |
R. L. Loeffen,
An optimal dividends problem with a terminal value for spectrally negative Lévy processes with a completely monotone jump density, J. Appl. Probab., 46 (2009), 85-98.
doi: 10.1239/jap/1238592118. |
[24] |
R. L. Loeffen, J. F. Renaud and X. W. Zhou,
Occupation times of intervals until first passage times for spectrally negative Lévy processes, Stoch. Proc. Appl., 124 (2014), 1408-1435.
doi: 10.1016/j.spa.2013.11.005. |
[25] |
A. Løkka and M. Zervos,
Optimal dividend and issuance of equity policies in the presence of proportional costs, Insurance Math. Econom., 42 (2008), 954-961.
doi: 10.1016/j.insmatheco.2007.10.013. |
[26] |
A. C. Y. Ng,
On a dual model with a dividend threshold, Insurance Math. Econom., 44 (2009), 315-324.
doi: 10.1016/j.insmatheco.2008.11.011. |
[27] |
M. R. Pistorius,
On doubly reflected completely asymmetric Lévy processes, Stoch. Proc. Appl., 107 (2003), 131-143.
doi: 10.1016/S0304-4149(03)00049-8. |
[28] |
M. R. Pistorius,
On exit and ergodicity of the completely asymmetric Lévy process reflected at its infimum, J. Th. Probab., 17 (2004), 183-220.
doi: 10.1023/B:JOTP.0000020481.14371.37. |
[29] |
J. L. Pérez and K. Yamazakic,
On the refracted-reflected spectrally negative Lévy processes, Stochastic Process. Appl., 128 (2018), 306-331.
doi: 10.1016/j.spa.2017.03.024. |
[30] |
K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, 1999. |
[31] |
S. E. Shreve, J. P. Lehoczky and D. P. Gaver,
Optimal consumption for general diffusions with absorbing and refelecting barriers, SIAM J. Control Optim., 22 (1984), 55-75.
doi: 10.1137/0322005. |
[32] |
D. J. Yao, H. L. Yang and R. M. Wang,
Optimal risk and dividend control problem with fixed costs and salvage value: Variance premium principle, Economic Modelling, 37 (2014), 53-64.
doi: 10.1016/j.econmod.2013.10.026. |
[33] |
C.C. Yin and K.C. Yuen,
Optimality of the threshold dividend strategy for the compound Poisson model, Statistics and Probability Letters, 81 (2011), 1841-1846.
doi: 10.1016/j.spl.2011.07.022. |
[34] |
M. Zhou and K. C. Yuen,
Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle, Economic Modelling, 29 (2012), 198-207.
doi: 10.1016/j.econmod.2011.09.007. |
[35] |
J. X. Zhu and H. L. Yang,
Optimal financing and dividend distribution in a general diffusion model with regime switching, Advances in Applied Probability, 48 (2016), 406-422.
doi: 10.1017/apr.2016.7. |

[1] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[2] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[3] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[4] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[5] |
Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021038 |
[6] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[7] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[8] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[9] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[10] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[11] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[12] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
[13] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[14] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[15] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[16] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]