April  2019, 15(2): 647-665. doi: 10.3934/jimo.2018063

Sufficiency and duality in non-smooth interval valued programming problems

1. 

Department of Applied Sciences, NITTTR (under Ministry of HRD, Govt. of India), Bhopal, M.P., India

2. 

Department of Mathematics, Rajiv Gandhi Proudyogiki Vishwavidyalaya, (State Technological University of M.P.), Bhopal, M.P., India

3. 

Department of Applied Mathematics, Pukyong National University, Busan, Korea

* Corresponding author: Do Sang Kim

Received  October 2015 Revised  March 2018 Published  June 2018

In this paper a non-smooth optimization problem is studied in an uncertain environment. The objective function of this problem is interval valued function. We introduce the class of $LU-(p,r)-[ρ^L,ρ^U]-(η, θ)$-invex interval valued functions about the Clarke generalized gradient. Then, through non trivial examples, we illustrate that the class of functions introduced exists. Based upon the proposed invexity assumptions, the sufficient optimality conditions are established. Further, we derive weak, strong and strict converse duality theorems for Mond-Weir type and Wolfe type dual programs. Some examples are also given in order to illustrate our results.

Citation: Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063
References:
[1]

I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. Inequal. Appl., 2013 (2013), 14pp. doi: 10.1186/1029-242X-2013-313.  Google Scholar

[2]

I. AhmadD. Singh and B. Ahmad, Optimality conditions for invex interval-valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.  doi: 10.2298/FIL1608121A.  Google Scholar

[3]

I. AhmadD. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19-45.   Google Scholar

[4]

T. Antczak, $(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379.  doi: 10.1006/jmaa.2001.7574.  Google Scholar

[5]

A. Ben-Israel and P. D. Robers, A decomposition method for interval linear programming, Manage. Sci., 16 (1969/1970), 374-387.  doi: 10.1287/mnsc.16.5.374.  Google Scholar

[6]

A. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273-288.  doi: 10.1007/s00186-012-0399-0.  Google Scholar

[7]

Y. Chalco-CanoW. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Ma., 12 (2013), 305-322.  doi: 10.1007/s10700-013-9156-y.  Google Scholar

[8]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New-York, 1983.  Google Scholar

[9]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[10]

H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of interval valued objective functions, Eur. J. Oper. Res., 48 (1990), 219-225.   Google Scholar

[11]

M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 14 (2014), 71-85.   Google Scholar

[12]

A. JayswalI. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127.  doi: 10.1016/j.amc.2011.09.041.  Google Scholar

[13]

A. JayswalA. K. Prasad and I. Stancu-Minasian, On nonsmooth multiobjective fractional programming problems involving $(p, r)-ρ- (η, θ)$ -invex functions, Yugosl. J. Oper. Res., 23 (2013), 367-386.  doi: 10.2298/YJOR130131012J.  Google Scholar

[14]

C. JiangX. HanG. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res., 188 (2008), 1-13.  doi: 10.1016/j.ejor.2007.03.031.  Google Scholar

[15]

P. Mandal and C. Nahak, Symmetric duality with $(p, r)-ρ-(η, θ)$-invexity, Appl. Math. Comput., 217 (2011), 8141-8148.  doi: 10.1016/j.amc.2011.02.068.  Google Scholar

[16]

D. SinghB. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonl. Anal. Optim., 5 (2014), 91-103.   Google Scholar

[17]

Y. Sun and L. Wang, Optimality conditions and duality in nondifferentiable interval valued programming, J. Ind. Manag. Optim., 9 (2013), 131-142.  doi: 10.3934/jimo.2013.9.131.  Google Scholar

[18]

Y. Sun and L. Wang, Mond Weir's type duality for interval valued programming, Computer Science and Automation Engineering (CSAE), IEEE International Conference, 3 (2012), 27-30.  doi: 10.1109/CSAE.2012.6272900.  Google Scholar

[19]

Y. SunX. Xu and L. Wang, Duality and saddle point type optimality for interval valued programming, Optim. Lett., 8 (2014), 1077-1091.  doi: 10.1007/s11590-013-0640-7.  Google Scholar

[20]

H. C. Wu, The Karush Kuhn Tuker optimality conditions in an optimization problem with interval valued objective functions, Eur. J. Oper. Res., 176 (2007), 46-59.  doi: 10.1016/j.ejor.2005.09.007.  Google Scholar

[21]

H. C. Wu, On interval valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316.  doi: 10.1016/j.jmaa.2007.05.023.  Google Scholar

[22]

H. C. Wu, Wolfe duality for interval valued optimization, J. Optimiz. Theory App., 138 (2008), 497-509.  doi: 10.1007/s10957-008-9396-0.  Google Scholar

[23]

H. C. Wu, The Karush Kuhn Tucker optimality conditions in a multiobjective programming problem with interval valued objective functions, Eur. J. Oper. Res., 196 (2009), 49-60.  doi: 10.1016/j.ejor.2008.03.012.  Google Scholar

[24]

G. J. Zalmai, Generalized sufficiency criteria in continuous-time programming with application to a class of variational-type inequalities, J. Math. Anal. Appl., 153 (1990), 331-355.  doi: 10.1016/0022-247X(90)90217-4.  Google Scholar

[25]

J. ZhangS. LiuL. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631.  doi: 10.1007/s11590-012-0601-6.  Google Scholar

[26]

J. Zhang, Optimality condition and wolfe duality for invex interval-valued nonlinear programming problems, J. Appl. Math., (2013), Article ID 641345, 11 pages.  Google Scholar

[27]

H. C. Zhou and Y. J. Wang, Optimality conditions and mixed duality for interval valued optimization, Fuzzy Info. and Eng., 2 (2009), 1315-1323.  doi: 10.1007/978-3-642-03664-4_140.  Google Scholar

show all references

References:
[1]

I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. Inequal. Appl., 2013 (2013), 14pp. doi: 10.1186/1029-242X-2013-313.  Google Scholar

[2]

I. AhmadD. Singh and B. Ahmad, Optimality conditions for invex interval-valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.  doi: 10.2298/FIL1608121A.  Google Scholar

[3]

I. AhmadD. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19-45.   Google Scholar

[4]

T. Antczak, $(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379.  doi: 10.1006/jmaa.2001.7574.  Google Scholar

[5]

A. Ben-Israel and P. D. Robers, A decomposition method for interval linear programming, Manage. Sci., 16 (1969/1970), 374-387.  doi: 10.1287/mnsc.16.5.374.  Google Scholar

[6]

A. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273-288.  doi: 10.1007/s00186-012-0399-0.  Google Scholar

[7]

Y. Chalco-CanoW. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Ma., 12 (2013), 305-322.  doi: 10.1007/s10700-013-9156-y.  Google Scholar

[8]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New-York, 1983.  Google Scholar

[9]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[10]

H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of interval valued objective functions, Eur. J. Oper. Res., 48 (1990), 219-225.   Google Scholar

[11]

M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 14 (2014), 71-85.   Google Scholar

[12]

A. JayswalI. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127.  doi: 10.1016/j.amc.2011.09.041.  Google Scholar

[13]

A. JayswalA. K. Prasad and I. Stancu-Minasian, On nonsmooth multiobjective fractional programming problems involving $(p, r)-ρ- (η, θ)$ -invex functions, Yugosl. J. Oper. Res., 23 (2013), 367-386.  doi: 10.2298/YJOR130131012J.  Google Scholar

[14]

C. JiangX. HanG. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res., 188 (2008), 1-13.  doi: 10.1016/j.ejor.2007.03.031.  Google Scholar

[15]

P. Mandal and C. Nahak, Symmetric duality with $(p, r)-ρ-(η, θ)$-invexity, Appl. Math. Comput., 217 (2011), 8141-8148.  doi: 10.1016/j.amc.2011.02.068.  Google Scholar

[16]

D. SinghB. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonl. Anal. Optim., 5 (2014), 91-103.   Google Scholar

[17]

Y. Sun and L. Wang, Optimality conditions and duality in nondifferentiable interval valued programming, J. Ind. Manag. Optim., 9 (2013), 131-142.  doi: 10.3934/jimo.2013.9.131.  Google Scholar

[18]

Y. Sun and L. Wang, Mond Weir's type duality for interval valued programming, Computer Science and Automation Engineering (CSAE), IEEE International Conference, 3 (2012), 27-30.  doi: 10.1109/CSAE.2012.6272900.  Google Scholar

[19]

Y. SunX. Xu and L. Wang, Duality and saddle point type optimality for interval valued programming, Optim. Lett., 8 (2014), 1077-1091.  doi: 10.1007/s11590-013-0640-7.  Google Scholar

[20]

H. C. Wu, The Karush Kuhn Tuker optimality conditions in an optimization problem with interval valued objective functions, Eur. J. Oper. Res., 176 (2007), 46-59.  doi: 10.1016/j.ejor.2005.09.007.  Google Scholar

[21]

H. C. Wu, On interval valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316.  doi: 10.1016/j.jmaa.2007.05.023.  Google Scholar

[22]

H. C. Wu, Wolfe duality for interval valued optimization, J. Optimiz. Theory App., 138 (2008), 497-509.  doi: 10.1007/s10957-008-9396-0.  Google Scholar

[23]

H. C. Wu, The Karush Kuhn Tucker optimality conditions in a multiobjective programming problem with interval valued objective functions, Eur. J. Oper. Res., 196 (2009), 49-60.  doi: 10.1016/j.ejor.2008.03.012.  Google Scholar

[24]

G. J. Zalmai, Generalized sufficiency criteria in continuous-time programming with application to a class of variational-type inequalities, J. Math. Anal. Appl., 153 (1990), 331-355.  doi: 10.1016/0022-247X(90)90217-4.  Google Scholar

[25]

J. ZhangS. LiuL. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631.  doi: 10.1007/s11590-012-0601-6.  Google Scholar

[26]

J. Zhang, Optimality condition and wolfe duality for invex interval-valued nonlinear programming problems, J. Appl. Math., (2013), Article ID 641345, 11 pages.  Google Scholar

[27]

H. C. Zhou and Y. J. Wang, Optimality conditions and mixed duality for interval valued optimization, Fuzzy Info. and Eng., 2 (2009), 1315-1323.  doi: 10.1007/978-3-642-03664-4_140.  Google Scholar

Table 1.  Summary of Example 7.1 and Remark 7.2
Functions Valued of $\rho$ Domain
$f^L(x)$ $\rho^L=\frac{-0.1}{|x+0.01|^4}$ $x\in (-0.4599,1.0766)$
$f^U(x)$ $\rho^U=\frac{-0.09}{|x+0.01|^4}$ $x\in (-0.2362,1.1438)$
$\sum_{j=1}^2\mu_jg_j(x)$ $\rho=4$ $x\in (-0.5172,0.5172)$
$[f^L(x),f^U(x)]$ $[\rho^L,\rho^U]=\left[\frac{-0.1}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-0.4599,1.0766)\cap (-0.2362,1.1438)$
$f^L_0(x)$ $\rho^L_0=\frac{-0.13}{|x+0.01|^4}$ $x\in(-1.0567,1.0567)$
$[f^L_0(x),f^U(x)]$ $[\rho^L_0,\rho^U]=\left[\frac{-0.13}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-1.0567,1.0567)\cap(-0.2362,1.1438)$
Functions Valued of $\rho$ Domain
$f^L(x)$ $\rho^L=\frac{-0.1}{|x+0.01|^4}$ $x\in (-0.4599,1.0766)$
$f^U(x)$ $\rho^U=\frac{-0.09}{|x+0.01|^4}$ $x\in (-0.2362,1.1438)$
$\sum_{j=1}^2\mu_jg_j(x)$ $\rho=4$ $x\in (-0.5172,0.5172)$
$[f^L(x),f^U(x)]$ $[\rho^L,\rho^U]=\left[\frac{-0.1}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-0.4599,1.0766)\cap (-0.2362,1.1438)$
$f^L_0(x)$ $\rho^L_0=\frac{-0.13}{|x+0.01|^4}$ $x\in(-1.0567,1.0567)$
$[f^L_0(x),f^U(x)]$ $[\rho^L_0,\rho^U]=\left[\frac{-0.13}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-1.0567,1.0567)\cap(-0.2362,1.1438)$
[1]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[2]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[3]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[4]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[5]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[6]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[7]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[8]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[9]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[10]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[11]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[12]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[13]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[14]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[15]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[16]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[17]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[18]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[19]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[20]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (186)
  • HTML views (1045)
  • Cited by (0)

Other articles
by authors

[Back to Top]