
-
Previous Article
A joint dynamic pricing and production model with asymmetric reference price effect
- JIMO Home
- This Issue
-
Next Article
Immediate schedule adjustment and semidefinite relaxation
Sufficiency and duality in non-smooth interval valued programming problems
1. | Department of Applied Sciences, NITTTR (under Ministry of HRD, Govt. of India), Bhopal, M.P., India |
2. | Department of Mathematics, Rajiv Gandhi Proudyogiki Vishwavidyalaya, (State Technological University of M.P.), Bhopal, M.P., India |
3. | Department of Applied Mathematics, Pukyong National University, Busan, Korea |
In this paper a non-smooth optimization problem is studied in an uncertain environment. The objective function of this problem is interval valued function. We introduce the class of $LU-(p,r)-[ρ^L,ρ^U]-(η, θ)$-invex interval valued functions about the Clarke generalized gradient. Then, through non trivial examples, we illustrate that the class of functions introduced exists. Based upon the proposed invexity assumptions, the sufficient optimality conditions are established. Further, we derive weak, strong and strict converse duality theorems for Mond-Weir type and Wolfe type dual programs. Some examples are also given in order to illustrate our results.
References:
[1] |
I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. Inequal. Appl., 2013 (2013), 14pp.
doi: 10.1186/1029-242X-2013-313. |
[2] |
I. Ahmad, D. Singh and B. Ahmad,
Optimality conditions for invex interval-valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.
doi: 10.2298/FIL1608121A. |
[3] |
I. Ahmad, D. Singh and B. A. Dar,
Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19-45.
|
[4] |
T. Antczak,
$(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379.
doi: 10.1006/jmaa.2001.7574. |
[5] |
A. Ben-Israel and P. D. Robers,
A decomposition method for interval linear programming, Manage. Sci., 16 (1969/1970), 374-387.
doi: 10.1287/mnsc.16.5.374. |
[6] |
A. Bhurjee and G. Panda,
Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273-288.
doi: 10.1007/s00186-012-0399-0. |
[7] |
Y. Chalco-Cano, W. A. Lodwick and A. Rufian-Lizana,
Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Ma., 12 (2013), 305-322.
doi: 10.1007/s10700-013-9156-y. |
[8] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New-York, 1983. |
[9] |
M. A. Hanson,
On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.
doi: 10.1016/0022-247X(81)90123-2. |
[10] |
H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of interval valued objective functions, Eur. J. Oper. Res., 48 (1990), 219-225. Google Scholar |
[11] |
M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 14 (2014), 71-85. Google Scholar |
[12] |
A. Jayswal, I. Stancu-Minasian and I. Ahmad,
On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127.
doi: 10.1016/j.amc.2011.09.041. |
[13] |
A. Jayswal, A. K. Prasad and I. Stancu-Minasian,
On nonsmooth multiobjective fractional programming problems involving $(p, r)-ρ- (η, θ)$ -invex functions, Yugosl. J. Oper. Res., 23 (2013), 367-386.
doi: 10.2298/YJOR130131012J. |
[14] |
C. Jiang, X. Han, G. R. Liu and G. P. Liu,
A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res., 188 (2008), 1-13.
doi: 10.1016/j.ejor.2007.03.031. |
[15] |
P. Mandal and C. Nahak,
Symmetric duality with $(p, r)-ρ-(η, θ)$-invexity, Appl. Math. Comput., 217 (2011), 8141-8148.
doi: 10.1016/j.amc.2011.02.068. |
[16] |
D. Singh, B. A. Dar and A. Goyal,
KKT optimality conditions for interval valued optimization problems, J. Nonl. Anal. Optim., 5 (2014), 91-103.
|
[17] |
Y. Sun and L. Wang,
Optimality conditions and duality in nondifferentiable interval valued programming, J. Ind. Manag. Optim., 9 (2013), 131-142.
doi: 10.3934/jimo.2013.9.131. |
[18] |
Y. Sun and L. Wang,
Mond Weir's type duality for interval valued programming, Computer Science and Automation Engineering (CSAE), IEEE International Conference, 3 (2012), 27-30.
doi: 10.1109/CSAE.2012.6272900. |
[19] |
Y. Sun, X. Xu and L. Wang,
Duality and saddle point type optimality for interval valued programming, Optim. Lett., 8 (2014), 1077-1091.
doi: 10.1007/s11590-013-0640-7. |
[20] |
H. C. Wu,
The Karush Kuhn Tuker optimality conditions in an optimization problem with interval valued objective functions, Eur. J. Oper. Res., 176 (2007), 46-59.
doi: 10.1016/j.ejor.2005.09.007. |
[21] |
H. C. Wu,
On interval valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316.
doi: 10.1016/j.jmaa.2007.05.023. |
[22] |
H. C. Wu,
Wolfe duality for interval valued optimization, J. Optimiz. Theory App., 138 (2008), 497-509.
doi: 10.1007/s10957-008-9396-0. |
[23] |
H. C. Wu,
The Karush Kuhn Tucker optimality conditions in a multiobjective programming problem with interval valued objective functions, Eur. J. Oper. Res., 196 (2009), 49-60.
doi: 10.1016/j.ejor.2008.03.012. |
[24] |
G. J. Zalmai,
Generalized sufficiency criteria in continuous-time programming with application to a class of variational-type inequalities, J. Math. Anal. Appl., 153 (1990), 331-355.
doi: 10.1016/0022-247X(90)90217-4. |
[25] |
J. Zhang, S. Liu, L. Li and Q. Feng,
The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631.
doi: 10.1007/s11590-012-0601-6. |
[26] |
J. Zhang, Optimality condition and wolfe duality for invex interval-valued nonlinear programming problems, J. Appl. Math., (2013), Article ID 641345, 11 pages. |
[27] |
H. C. Zhou and Y. J. Wang,
Optimality conditions and mixed duality for interval valued optimization, Fuzzy Info. and Eng., 2 (2009), 1315-1323.
doi: 10.1007/978-3-642-03664-4_140. |
show all references
References:
[1] |
I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. Inequal. Appl., 2013 (2013), 14pp.
doi: 10.1186/1029-242X-2013-313. |
[2] |
I. Ahmad, D. Singh and B. Ahmad,
Optimality conditions for invex interval-valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.
doi: 10.2298/FIL1608121A. |
[3] |
I. Ahmad, D. Singh and B. A. Dar,
Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19-45.
|
[4] |
T. Antczak,
$(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379.
doi: 10.1006/jmaa.2001.7574. |
[5] |
A. Ben-Israel and P. D. Robers,
A decomposition method for interval linear programming, Manage. Sci., 16 (1969/1970), 374-387.
doi: 10.1287/mnsc.16.5.374. |
[6] |
A. Bhurjee and G. Panda,
Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273-288.
doi: 10.1007/s00186-012-0399-0. |
[7] |
Y. Chalco-Cano, W. A. Lodwick and A. Rufian-Lizana,
Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Ma., 12 (2013), 305-322.
doi: 10.1007/s10700-013-9156-y. |
[8] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New-York, 1983. |
[9] |
M. A. Hanson,
On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.
doi: 10.1016/0022-247X(81)90123-2. |
[10] |
H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of interval valued objective functions, Eur. J. Oper. Res., 48 (1990), 219-225. Google Scholar |
[11] |
M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 14 (2014), 71-85. Google Scholar |
[12] |
A. Jayswal, I. Stancu-Minasian and I. Ahmad,
On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127.
doi: 10.1016/j.amc.2011.09.041. |
[13] |
A. Jayswal, A. K. Prasad and I. Stancu-Minasian,
On nonsmooth multiobjective fractional programming problems involving $(p, r)-ρ- (η, θ)$ -invex functions, Yugosl. J. Oper. Res., 23 (2013), 367-386.
doi: 10.2298/YJOR130131012J. |
[14] |
C. Jiang, X. Han, G. R. Liu and G. P. Liu,
A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res., 188 (2008), 1-13.
doi: 10.1016/j.ejor.2007.03.031. |
[15] |
P. Mandal and C. Nahak,
Symmetric duality with $(p, r)-ρ-(η, θ)$-invexity, Appl. Math. Comput., 217 (2011), 8141-8148.
doi: 10.1016/j.amc.2011.02.068. |
[16] |
D. Singh, B. A. Dar and A. Goyal,
KKT optimality conditions for interval valued optimization problems, J. Nonl. Anal. Optim., 5 (2014), 91-103.
|
[17] |
Y. Sun and L. Wang,
Optimality conditions and duality in nondifferentiable interval valued programming, J. Ind. Manag. Optim., 9 (2013), 131-142.
doi: 10.3934/jimo.2013.9.131. |
[18] |
Y. Sun and L. Wang,
Mond Weir's type duality for interval valued programming, Computer Science and Automation Engineering (CSAE), IEEE International Conference, 3 (2012), 27-30.
doi: 10.1109/CSAE.2012.6272900. |
[19] |
Y. Sun, X. Xu and L. Wang,
Duality and saddle point type optimality for interval valued programming, Optim. Lett., 8 (2014), 1077-1091.
doi: 10.1007/s11590-013-0640-7. |
[20] |
H. C. Wu,
The Karush Kuhn Tuker optimality conditions in an optimization problem with interval valued objective functions, Eur. J. Oper. Res., 176 (2007), 46-59.
doi: 10.1016/j.ejor.2005.09.007. |
[21] |
H. C. Wu,
On interval valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316.
doi: 10.1016/j.jmaa.2007.05.023. |
[22] |
H. C. Wu,
Wolfe duality for interval valued optimization, J. Optimiz. Theory App., 138 (2008), 497-509.
doi: 10.1007/s10957-008-9396-0. |
[23] |
H. C. Wu,
The Karush Kuhn Tucker optimality conditions in a multiobjective programming problem with interval valued objective functions, Eur. J. Oper. Res., 196 (2009), 49-60.
doi: 10.1016/j.ejor.2008.03.012. |
[24] |
G. J. Zalmai,
Generalized sufficiency criteria in continuous-time programming with application to a class of variational-type inequalities, J. Math. Anal. Appl., 153 (1990), 331-355.
doi: 10.1016/0022-247X(90)90217-4. |
[25] |
J. Zhang, S. Liu, L. Li and Q. Feng,
The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631.
doi: 10.1007/s11590-012-0601-6. |
[26] |
J. Zhang, Optimality condition and wolfe duality for invex interval-valued nonlinear programming problems, J. Appl. Math., (2013), Article ID 641345, 11 pages. |
[27] |
H. C. Zhou and Y. J. Wang,
Optimality conditions and mixed duality for interval valued optimization, Fuzzy Info. and Eng., 2 (2009), 1315-1323.
doi: 10.1007/978-3-642-03664-4_140. |
Functions | Valued of |
Domain |
Functions | Valued of |
Domain |
[1] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[2] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[3] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[4] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[5] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[6] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[7] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[8] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[9] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[10] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[11] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[12] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[13] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[14] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[15] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[16] |
Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012 |
[17] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[18] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[19] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[20] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]