[1]
|
I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. Inequal. Appl., 2013 (2013), 14pp.
doi: 10.1186/1029-242X-2013-313.
|
[2]
|
I. Ahmad, D. Singh and B. Ahmad, Optimality conditions for invex interval-valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.
doi: 10.2298/FIL1608121A.
|
[3]
|
I. Ahmad, D. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19-45.
|
[4]
|
T. Antczak, $(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379.
doi: 10.1006/jmaa.2001.7574.
|
[5]
|
A. Ben-Israel and P. D. Robers, A decomposition method for interval linear programming, Manage. Sci., 16 (1969/1970), 374-387.
doi: 10.1287/mnsc.16.5.374.
|
[6]
|
A. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273-288.
doi: 10.1007/s00186-012-0399-0.
|
[7]
|
Y. Chalco-Cano, W. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Ma., 12 (2013), 305-322.
doi: 10.1007/s10700-013-9156-y.
|
[8]
|
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New-York, 1983.
|
[9]
|
M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.
doi: 10.1016/0022-247X(81)90123-2.
|
[10]
|
H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of interval valued objective functions, Eur. J. Oper. Res., 48 (1990), 219-225.
|
[11]
|
M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 14 (2014), 71-85.
|
[12]
|
A. Jayswal, I. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127.
doi: 10.1016/j.amc.2011.09.041.
|
[13]
|
A. Jayswal, A. K. Prasad and I. Stancu-Minasian, On nonsmooth multiobjective fractional programming problems involving $(p, r)-ρ- (η, θ)$ -invex functions, Yugosl. J. Oper. Res., 23 (2013), 367-386.
doi: 10.2298/YJOR130131012J.
|
[14]
|
C. Jiang, X. Han, G. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res., 188 (2008), 1-13.
doi: 10.1016/j.ejor.2007.03.031.
|
[15]
|
P. Mandal and C. Nahak, Symmetric duality with $(p, r)-ρ-(η, θ)$-invexity, Appl. Math. Comput., 217 (2011), 8141-8148.
doi: 10.1016/j.amc.2011.02.068.
|
[16]
|
D. Singh, B. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonl. Anal. Optim., 5 (2014), 91-103.
|
[17]
|
Y. Sun and L. Wang, Optimality conditions and duality in nondifferentiable interval valued programming, J. Ind. Manag. Optim., 9 (2013), 131-142.
doi: 10.3934/jimo.2013.9.131.
|
[18]
|
Y. Sun and L. Wang, Mond Weir's type duality for interval valued programming, Computer Science and Automation Engineering (CSAE), IEEE International Conference, 3 (2012), 27-30.
doi: 10.1109/CSAE.2012.6272900.
|
[19]
|
Y. Sun, X. Xu and L. Wang, Duality and saddle point type optimality for interval valued programming, Optim. Lett., 8 (2014), 1077-1091.
doi: 10.1007/s11590-013-0640-7.
|
[20]
|
H. C. Wu, The Karush Kuhn Tuker optimality conditions in an optimization problem with interval valued objective functions, Eur. J. Oper. Res., 176 (2007), 46-59.
doi: 10.1016/j.ejor.2005.09.007.
|
[21]
|
H. C. Wu, On interval valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316.
doi: 10.1016/j.jmaa.2007.05.023.
|
[22]
|
H. C. Wu, Wolfe duality for interval valued optimization, J. Optimiz. Theory App., 138 (2008), 497-509.
doi: 10.1007/s10957-008-9396-0.
|
[23]
|
H. C. Wu, The Karush Kuhn Tucker optimality conditions in a multiobjective programming problem with interval valued objective functions, Eur. J. Oper. Res., 196 (2009), 49-60.
doi: 10.1016/j.ejor.2008.03.012.
|
[24]
|
G. J. Zalmai, Generalized sufficiency criteria in continuous-time programming with application to a class of variational-type inequalities, J. Math. Anal. Appl., 153 (1990), 331-355.
doi: 10.1016/0022-247X(90)90217-4.
|
[25]
|
J. Zhang, S. Liu, L. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631.
doi: 10.1007/s11590-012-0601-6.
|
[26]
|
J. Zhang, Optimality condition and wolfe duality for invex interval-valued nonlinear programming problems, J. Appl. Math., (2013), Article ID 641345, 11 pages.
|
[27]
|
H. C. Zhou and Y. J. Wang, Optimality conditions and mixed duality for interval valued optimization, Fuzzy Info. and Eng., 2 (2009), 1315-1323.
doi: 10.1007/978-3-642-03664-4_140.
|