April  2019, 15(2): 775-789. doi: 10.3934/jimo.2018070

Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors

School of Mathematical Sciences, Tianjin University, Tianjin 300350, China

* Corresponding author: Wei Wu

Received  September 2016 Revised  December 2017 Published  June 2018

Fund Project: This work was supported by NSF grant of China (Grant No. 11371276).

In this paper, we prove a maximum property of the largest H-singular value of a partially symmetric nonnegative rectangular tensor, and establish some bounds for this singular value. Then we give the definition of copositive rectangular tensors. This concept extends from the concept of copositive square tensors. Partially symmetric nonnegative rectangular tensors and positive semi-definite rectangular tensors are examples of copositive rectangular tensors. We establish some necessary conditions and some sufficient conditions for a real partially symmetric rectangular tensor to be a copositive rectangular tensor. We also give an equivalent definition of strictly copositive rectangular tensors. Moreover, some further properties of copositive rectangular tensors are discussed.

Citation: Yining Gu, Wei Wu. Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 775-789. doi: 10.3934/jimo.2018070
References:
[1]

L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2008, Springer, Berlin/Heidelberg, (2008), 1-8.  doi: 10.1007/978-3-540-85988-8_1.  Google Scholar

[2]

K. C. ChangL. Qi and G. Zhou, Singular values of real rectangular tensor, J. Math Anal. Appl., 370 (2010), 284-294.  doi: 10.1016/j.jmaa.2010.04.037.  Google Scholar

[3]

K. C. ChangK. Pearson and T. Zhang, Perron Frobenius Theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520.  doi: 10.4310/CMS.2008.v6.n2.a12.  Google Scholar

[4]

D. DahlJ. M. LeinassJ. Myrheim and E. Ovrum, A tensor product matrix approximation problem in quantum physics, Linear Algebra Appl., 420 (2007), 711-725.  doi: 10.1016/j.laa.2006.08.026.  Google Scholar

[5]

L. De LathauwerB. D. Moor and J. Vandewalle, On the best rank-1 and rank-$ (R_{1},R_{2},...,R_{N})$ approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), 1324-1342.  doi: 10.1137/S0895479898346995.  Google Scholar

[6]

A. EinsteinB. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete, Phys. Rev., 47 (1995), 777-780.  doi: 10.1103/PhysRev.47.777.  Google Scholar

[7]

J. K. Knowles and E. Sternberg, On the ellipticity of the equations of non-linear elastostatics for a special material, J. Elasticity, 5 (1975), 341-361.  doi: 10.1007/BF00126996.  Google Scholar

[8]

J. K. Knowles and E. Sternberg, On the failure of ellipticity of the equations for finite elastostatic plane strain, Arch. Ration. Mech. Anal., 63 (1997), 321-336.  doi: 10.1007/BF00279991.  Google Scholar

[9]

L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in Multi-tensor Adaptive Processing, 2005, 129–132. Google Scholar

[10]

C. LingJ. NieL. Qi and Y. Ye, SDP and SOS relaxations for bi-quadratic optimization over unit spheres, SIAM J. Optim., 20 (2009), 1286-1310.  doi: 10.1137/080729104.  Google Scholar

[11]

M. NgL. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SLAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.  doi: 10.1137/09074838X.  Google Scholar

[12]

Q. NiL. Qi and F. Wang, An eigenvalue method for the positive definition identification problem, IEEE Transactions on Automatic Control, 53 (2008), 1096-1107.  doi: 10.1109/TAC.2008.923679.  Google Scholar

[13]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.  Google Scholar

[14]

L. QiW. Sun and Y. Wang, Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526.  doi: 10.1007/s11464-007-0031-4.  Google Scholar

[15]

L. QiY. Wang and E. X. Wu, D-eigenvalues of diffusion kurtosis tensor, Journal of Computational and Applied Mathematics, 221 (2008), 150-157.  doi: 10.1016/j.cam.2007.10.012.  Google Scholar

[16]

L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439 (2013), 228-238.  doi: 10.1016/j.laa.2013.03.015.  Google Scholar

[17]

L. QiH. H. Dai and D. Han, Conditions for strong ellipticity and $M$-eigenvalues, Front. Math. China, 4 (2009), 349-364.  doi: 10.1007/s11464-009-0016-6.  Google Scholar

[18]

P. Rosakis, Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics, Arch. Ration. Mech. Anal., 109 (1990), 1-37.  doi: 10.1007/BF00377977.  Google Scholar

[19]

E. Schrödinger, Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften, Naturwissenschaften, 23 (1935), 807-812,823-828,844-849. Google Scholar

[20]

H. C. Simpson and S. J. Spector, On copositive matrices and strong ellipticity for isotropic elastic materials, Arch. Ration. Mech. Anal., 84 (1983), 55-68.  doi: 10.1007/BF00251549.  Google Scholar

[21]

Y. Song and L. Qi, Necessary and sufficient conditions for copositive tensors, Linear Multilinear Algebra, 63 (2015), 120-131.  doi: 10.1080/03081087.2013.851198.  Google Scholar

[22]

Y. Wang and M. Aron, A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media, J. Elasticity, 44 (1996), 89-96.  doi: 10.1007/BF00042193.  Google Scholar

[23]

Y. WangL. Qi and X. Zhang, A practical method for computing the largest $M$-eigenvalue of a fourth-order partially symmetric tensor, Numerical Linear Algebra with Applications, 16 (2009), 589-601.  doi: 10.1002/nla.633.  Google Scholar

[24]

Y. N. Yang and Q. Yang, Singular values of nonnegative rectangular tensors, Front. Math. China, 6 (2011), 363-378.  doi: 10.1007/s11464-011-0108-y.  Google Scholar

[25]

L. ZhangL. QiZ. Luo and Y. Xu, The dominant eigenvalue of an essentially nonnegative tensor, Numerical Linear Algebra with Applications, 20 (2013), 929-941.  doi: 10.1002/nla.1880.  Google Scholar

show all references

References:
[1]

L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2008, Springer, Berlin/Heidelberg, (2008), 1-8.  doi: 10.1007/978-3-540-85988-8_1.  Google Scholar

[2]

K. C. ChangL. Qi and G. Zhou, Singular values of real rectangular tensor, J. Math Anal. Appl., 370 (2010), 284-294.  doi: 10.1016/j.jmaa.2010.04.037.  Google Scholar

[3]

K. C. ChangK. Pearson and T. Zhang, Perron Frobenius Theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520.  doi: 10.4310/CMS.2008.v6.n2.a12.  Google Scholar

[4]

D. DahlJ. M. LeinassJ. Myrheim and E. Ovrum, A tensor product matrix approximation problem in quantum physics, Linear Algebra Appl., 420 (2007), 711-725.  doi: 10.1016/j.laa.2006.08.026.  Google Scholar

[5]

L. De LathauwerB. D. Moor and J. Vandewalle, On the best rank-1 and rank-$ (R_{1},R_{2},...,R_{N})$ approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), 1324-1342.  doi: 10.1137/S0895479898346995.  Google Scholar

[6]

A. EinsteinB. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete, Phys. Rev., 47 (1995), 777-780.  doi: 10.1103/PhysRev.47.777.  Google Scholar

[7]

J. K. Knowles and E. Sternberg, On the ellipticity of the equations of non-linear elastostatics for a special material, J. Elasticity, 5 (1975), 341-361.  doi: 10.1007/BF00126996.  Google Scholar

[8]

J. K. Knowles and E. Sternberg, On the failure of ellipticity of the equations for finite elastostatic plane strain, Arch. Ration. Mech. Anal., 63 (1997), 321-336.  doi: 10.1007/BF00279991.  Google Scholar

[9]

L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in Multi-tensor Adaptive Processing, 2005, 129–132. Google Scholar

[10]

C. LingJ. NieL. Qi and Y. Ye, SDP and SOS relaxations for bi-quadratic optimization over unit spheres, SIAM J. Optim., 20 (2009), 1286-1310.  doi: 10.1137/080729104.  Google Scholar

[11]

M. NgL. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SLAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.  doi: 10.1137/09074838X.  Google Scholar

[12]

Q. NiL. Qi and F. Wang, An eigenvalue method for the positive definition identification problem, IEEE Transactions on Automatic Control, 53 (2008), 1096-1107.  doi: 10.1109/TAC.2008.923679.  Google Scholar

[13]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.  Google Scholar

[14]

L. QiW. Sun and Y. Wang, Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526.  doi: 10.1007/s11464-007-0031-4.  Google Scholar

[15]

L. QiY. Wang and E. X. Wu, D-eigenvalues of diffusion kurtosis tensor, Journal of Computational and Applied Mathematics, 221 (2008), 150-157.  doi: 10.1016/j.cam.2007.10.012.  Google Scholar

[16]

L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439 (2013), 228-238.  doi: 10.1016/j.laa.2013.03.015.  Google Scholar

[17]

L. QiH. H. Dai and D. Han, Conditions for strong ellipticity and $M$-eigenvalues, Front. Math. China, 4 (2009), 349-364.  doi: 10.1007/s11464-009-0016-6.  Google Scholar

[18]

P. Rosakis, Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics, Arch. Ration. Mech. Anal., 109 (1990), 1-37.  doi: 10.1007/BF00377977.  Google Scholar

[19]

E. Schrödinger, Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften, Naturwissenschaften, 23 (1935), 807-812,823-828,844-849. Google Scholar

[20]

H. C. Simpson and S. J. Spector, On copositive matrices and strong ellipticity for isotropic elastic materials, Arch. Ration. Mech. Anal., 84 (1983), 55-68.  doi: 10.1007/BF00251549.  Google Scholar

[21]

Y. Song and L. Qi, Necessary and sufficient conditions for copositive tensors, Linear Multilinear Algebra, 63 (2015), 120-131.  doi: 10.1080/03081087.2013.851198.  Google Scholar

[22]

Y. Wang and M. Aron, A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media, J. Elasticity, 44 (1996), 89-96.  doi: 10.1007/BF00042193.  Google Scholar

[23]

Y. WangL. Qi and X. Zhang, A practical method for computing the largest $M$-eigenvalue of a fourth-order partially symmetric tensor, Numerical Linear Algebra with Applications, 16 (2009), 589-601.  doi: 10.1002/nla.633.  Google Scholar

[24]

Y. N. Yang and Q. Yang, Singular values of nonnegative rectangular tensors, Front. Math. China, 6 (2011), 363-378.  doi: 10.1007/s11464-011-0108-y.  Google Scholar

[25]

L. ZhangL. QiZ. Luo and Y. Xu, The dominant eigenvalue of an essentially nonnegative tensor, Numerical Linear Algebra with Applications, 20 (2013), 929-941.  doi: 10.1002/nla.1880.  Google Scholar

[1]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[2]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[3]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[4]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[5]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[6]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[7]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[8]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[9]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452

[10]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (262)
  • HTML views (1075)
  • Cited by (1)

Other articles
by authors

[Back to Top]