April  2019, 15(2): 817-832. doi: 10.3934/jimo.2018072

On the global optimal solution for linear quadratic problems of switched system

1. 

College of Mathematics Science, Chongqing Normal University, Chongqing, China

2. 

School of Management, Shanghai University, Shanghai, China

3. 

Faculty of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang, Guangdong, China

* Corresponding author: Zhi Guo Feng

Received  December 2016 Revised  March 2018 Published  June 2018

The global optimal solution for the optimal switching problem is considered in discrete time, where these subsystems are linear and the cost functional is quadratic. The optimal switching problem is a discrete optimization problem. Complete enumeration search is always required to find the global optimal solution, which is very expensive. Relaxation method is an effective method to transform the discrete optimization problem into the continuous optimization problem, while the optimal solution is always not the feasible solution of the discrete optimization problem. In this paper, we propose a special class of relaxation method to transform the optimal switching problem into a relaxed optimization problem. We prove that the optimal solution of this modified relaxed optimization problem is exactly that of the optimal switching problem. Then, the global optimal solution can be obtained by solving the continuous optimization problem easily. Numerical examples are demonstrated to show that the modified relaxation method is efficient and effective to obtain the global optimal solution.

Citation: Jin Feng He, Wei Xu, Zhi Guo Feng, Xinsong Yang. On the global optimal solution for linear quadratic problems of switched system. Journal of Industrial & Management Optimization, 2019, 15 (2) : 817-832. doi: 10.3934/jimo.2018072
References:
[1]

H. AxelssonY. WardiM. Egerstedt and E. I. Verriest, Gradient descent approach to optiomal mode scheduling in hybrid dynamical systems, Journal of Optimization Theory and Applications, 136 (2008), 167-186.  doi: 10.1007/s10957-007-9305-y.  Google Scholar

[2]

S. C. Bengea and R. A. DeCarlo, Optimal control of switching systems, Automatica, 41 (2005), 11-27.  doi: 10.1016/j.automatica.2004.08.003.  Google Scholar

[3]

M. EgerstedtY. Wardi and H. Axelsson, Transition-time optimization for switched-mode dynamical systems, IEEE Transactions on Automatic Control, 51 (2006), 110-115.  doi: 10.1109/TAC.2005.861711.  Google Scholar

[4]

Z. G. FengK. L. Teo and V. Rehbock, Hybrid method for a general optimal sensor scheduling problem in discrete time, Automatica, 44 (2008), 1295-1303.  doi: 10.1016/j.automatica.2007.09.024.  Google Scholar

[5]

Z. G. FengK. L. Teo and Y. Zhao, Branch and bound method for sensor scheduling in discrete time, Journal of Industrial and Management Optimization, 1 (2005), 499-512.  doi: 10.3934/jimo.2005.1.499.  Google Scholar

[6]

Z. G. FengZ.G. FengK. L. Teo and V. Rehbock, A discrete filled function method for the optimal control of switched systems in discrete time, Optimal Control, Applications and Methods, 30 (2009), 583-593.  doi: 10.1002/oca.885.  Google Scholar

[7]

R. LiK. L. TeoK. H. Wong and G. R. Duan, Control parametrization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 1393-1403.  doi: 10.1016/j.mcm.2005.08.012.  Google Scholar

[8]

R. LiZ. G. FengK. L. Teo and G. R. Duan, Optimal Piecewise State Feedback Control for Impulsive Switched Systems, Mathematical and Computer Modelling, 48 (2008), 468-479.  doi: 10.1016/j.mcm.2007.06.028.  Google Scholar

[9]

Q. LinR. Loxton and K. L. Teo, Optimal control of nonlinear switched systems: Computational methods and applications, Journal of the Operations Research Society of China, 1 (2013), 275-311.  doi: 10.1007/s40305-013-0021-z.  Google Scholar

[10]

C. LiuR. Loxton and K. L. Teo, Optimal parameter selection for nonlinear multistage systems with time-delays, Computational Optimization and Applications, 59 (2014), 285-306.  doi: 10.1007/s10589-013-9632-x.  Google Scholar

[11]

C. LiuZ. GongK. L. TeoJ. Sun and L. Caccetta, Robust multi-objective optimal switching control arising in 1,3-propanediol microbial fed-batch process, Nonlinear Analysis Hybrid Systems, 25 (2017), 1-20.  doi: 10.1016/j.nahs.2017.01.006.  Google Scholar

[12]

C. LiuR. Loxton and K. L. Teo, Switching time and parameter optimization in nonlinear switched systems with multiple time-delays, Journal of Optimization Theory and Applications, 163 (2014), 957-988.  doi: 10.1007/s10957-014-0533-7.  Google Scholar

[13]

C. Liu and Z. Gong, Optimal Control of Switched Systems Arising in Fermentation Processes, Springer-Verlag, Berlin, 2014. doi: 10.1007/978-3-662-43793-3.  Google Scholar

[14]

Q. Long and C. Wu, A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization, Journal of Industrial and Management Optimization, 10 (2014), 1279-1296.  doi: 10.3934/jimo.2014.10.1279.  Google Scholar

[15]

R. LoxtonK. L. TeoV. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter, Automatica, 45 (2009), 973-980.  doi: 10.1016/j.automatica.2008.10.031.  Google Scholar

[16]

B. Piccoli, Hybrid systems and optimal control, in Proceedings of the 37th IEEE Conference on Decision and Control, 1998, 13–18. doi: 10.1109/CDC.1998.760582.  Google Scholar

[17]

E. RentsenJ. Zhou and K. L. Teo, A global optimization approach to fractional optimal control, Journal of Industrial and Management Optimization, 12 (2016), 73-82.  doi: 10.3934/jimo.2016.12.73.  Google Scholar

[18]

M. SolerA. Olivares and E. Staffetti, Hybrid optimal control approach to commercial aircraft trajectory planning, Journal of Guidance, Control, and Dynamics, 33 (2010), 985-991.   Google Scholar

[19]

H. J. Sussmann, A maximum principle for hybrid optimal control problems, in Proceedings of the 38th IEEE Conference on Decision and Control, 1999, 425–430. doi: 10.1109/CDC.1999.832814.  Google Scholar

[20]

K. L. TeoL. S. JenningsH. W. J. Lee and V. Rehbock, The control parametrization enhancing transform for constrained optimal control problems, Journal of Australian Mathematical Society, 40 (1999), 314-335.  doi: 10.1017/S0334270000010936.  Google Scholar

[21]

C. Wu and K. L. Teo, Global impulsive optimal control computation, Journal of Industrial and Management Optimization, 2 (2006), 435-450.  doi: 10.3934/jimo.2006.2.435.  Google Scholar

[22]

C. WuK. L. Teo and S. Wu, Min-max optimal control of linear systems with uncertainty and terminal state constraints, Automatica, 49 (2013), 1809-1815.  doi: 10.1016/j.automatica.2013.02.052.  Google Scholar

[23]

C. WuK. L. TeoR. Li and Y. Zhao, Optimal control of switched systems with time delay, Applied Mathematics Letters, 19 (2006), 1062-1067.  doi: 10.1016/j.aml.2005.11.018.  Google Scholar

[24]

X. Xu and P. J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Transactions on Automatic Control, 49 (2004), 2-16.  doi: 10.1109/TAC.2003.821417.  Google Scholar

[25]

W. XuZ. G. FengJ. W. Peng and K. F. C. Yiu, Optimal switching for linear quadratic problem of switched systems in discrete time, Automatica, 78 (2017), 185-193.  doi: 10.1016/j.automatica.2016.12.002.  Google Scholar

[26]

F. YangK. L. TeoR. LoxtonV. RehbockB. LiC. Yu and L. Jennings, Visual miser: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.  doi: 10.3934/jimo.2016.12.781.  Google Scholar

[27]

J. ZhaiT. NiuJ. Ye and E. Feng, Optimal control of nonlinear switched system with mixed constraints and its parallel optimization algorithm, Nonlinear Analysis Hybrid Systems, 25 (2017), 21-40.  doi: 10.1016/j.nahs.2017.02.001.  Google Scholar

[28]

C. ZhaoC. WuJ. ChaiX. WangX. YangJ. M. Lee and M. J. Kim, Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty, Applied Soft Computing, 55 (2017), 549-564.  doi: 10.1016/j.asoc.2017.02.009.  Google Scholar

[29]

X. L. ZhuZ. G. Feng and J. W. Peng, Robust design of sensor fusion problem in discrete time, Journal of Industrial and Management Optimization, 13 (2017), 825-834.  doi: 10.3934/jimo.2016048.  Google Scholar

show all references

References:
[1]

H. AxelssonY. WardiM. Egerstedt and E. I. Verriest, Gradient descent approach to optiomal mode scheduling in hybrid dynamical systems, Journal of Optimization Theory and Applications, 136 (2008), 167-186.  doi: 10.1007/s10957-007-9305-y.  Google Scholar

[2]

S. C. Bengea and R. A. DeCarlo, Optimal control of switching systems, Automatica, 41 (2005), 11-27.  doi: 10.1016/j.automatica.2004.08.003.  Google Scholar

[3]

M. EgerstedtY. Wardi and H. Axelsson, Transition-time optimization for switched-mode dynamical systems, IEEE Transactions on Automatic Control, 51 (2006), 110-115.  doi: 10.1109/TAC.2005.861711.  Google Scholar

[4]

Z. G. FengK. L. Teo and V. Rehbock, Hybrid method for a general optimal sensor scheduling problem in discrete time, Automatica, 44 (2008), 1295-1303.  doi: 10.1016/j.automatica.2007.09.024.  Google Scholar

[5]

Z. G. FengK. L. Teo and Y. Zhao, Branch and bound method for sensor scheduling in discrete time, Journal of Industrial and Management Optimization, 1 (2005), 499-512.  doi: 10.3934/jimo.2005.1.499.  Google Scholar

[6]

Z. G. FengZ.G. FengK. L. Teo and V. Rehbock, A discrete filled function method for the optimal control of switched systems in discrete time, Optimal Control, Applications and Methods, 30 (2009), 583-593.  doi: 10.1002/oca.885.  Google Scholar

[7]

R. LiK. L. TeoK. H. Wong and G. R. Duan, Control parametrization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 1393-1403.  doi: 10.1016/j.mcm.2005.08.012.  Google Scholar

[8]

R. LiZ. G. FengK. L. Teo and G. R. Duan, Optimal Piecewise State Feedback Control for Impulsive Switched Systems, Mathematical and Computer Modelling, 48 (2008), 468-479.  doi: 10.1016/j.mcm.2007.06.028.  Google Scholar

[9]

Q. LinR. Loxton and K. L. Teo, Optimal control of nonlinear switched systems: Computational methods and applications, Journal of the Operations Research Society of China, 1 (2013), 275-311.  doi: 10.1007/s40305-013-0021-z.  Google Scholar

[10]

C. LiuR. Loxton and K. L. Teo, Optimal parameter selection for nonlinear multistage systems with time-delays, Computational Optimization and Applications, 59 (2014), 285-306.  doi: 10.1007/s10589-013-9632-x.  Google Scholar

[11]

C. LiuZ. GongK. L. TeoJ. Sun and L. Caccetta, Robust multi-objective optimal switching control arising in 1,3-propanediol microbial fed-batch process, Nonlinear Analysis Hybrid Systems, 25 (2017), 1-20.  doi: 10.1016/j.nahs.2017.01.006.  Google Scholar

[12]

C. LiuR. Loxton and K. L. Teo, Switching time and parameter optimization in nonlinear switched systems with multiple time-delays, Journal of Optimization Theory and Applications, 163 (2014), 957-988.  doi: 10.1007/s10957-014-0533-7.  Google Scholar

[13]

C. Liu and Z. Gong, Optimal Control of Switched Systems Arising in Fermentation Processes, Springer-Verlag, Berlin, 2014. doi: 10.1007/978-3-662-43793-3.  Google Scholar

[14]

Q. Long and C. Wu, A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization, Journal of Industrial and Management Optimization, 10 (2014), 1279-1296.  doi: 10.3934/jimo.2014.10.1279.  Google Scholar

[15]

R. LoxtonK. L. TeoV. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter, Automatica, 45 (2009), 973-980.  doi: 10.1016/j.automatica.2008.10.031.  Google Scholar

[16]

B. Piccoli, Hybrid systems and optimal control, in Proceedings of the 37th IEEE Conference on Decision and Control, 1998, 13–18. doi: 10.1109/CDC.1998.760582.  Google Scholar

[17]

E. RentsenJ. Zhou and K. L. Teo, A global optimization approach to fractional optimal control, Journal of Industrial and Management Optimization, 12 (2016), 73-82.  doi: 10.3934/jimo.2016.12.73.  Google Scholar

[18]

M. SolerA. Olivares and E. Staffetti, Hybrid optimal control approach to commercial aircraft trajectory planning, Journal of Guidance, Control, and Dynamics, 33 (2010), 985-991.   Google Scholar

[19]

H. J. Sussmann, A maximum principle for hybrid optimal control problems, in Proceedings of the 38th IEEE Conference on Decision and Control, 1999, 425–430. doi: 10.1109/CDC.1999.832814.  Google Scholar

[20]

K. L. TeoL. S. JenningsH. W. J. Lee and V. Rehbock, The control parametrization enhancing transform for constrained optimal control problems, Journal of Australian Mathematical Society, 40 (1999), 314-335.  doi: 10.1017/S0334270000010936.  Google Scholar

[21]

C. Wu and K. L. Teo, Global impulsive optimal control computation, Journal of Industrial and Management Optimization, 2 (2006), 435-450.  doi: 10.3934/jimo.2006.2.435.  Google Scholar

[22]

C. WuK. L. Teo and S. Wu, Min-max optimal control of linear systems with uncertainty and terminal state constraints, Automatica, 49 (2013), 1809-1815.  doi: 10.1016/j.automatica.2013.02.052.  Google Scholar

[23]

C. WuK. L. TeoR. Li and Y. Zhao, Optimal control of switched systems with time delay, Applied Mathematics Letters, 19 (2006), 1062-1067.  doi: 10.1016/j.aml.2005.11.018.  Google Scholar

[24]

X. Xu and P. J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Transactions on Automatic Control, 49 (2004), 2-16.  doi: 10.1109/TAC.2003.821417.  Google Scholar

[25]

W. XuZ. G. FengJ. W. Peng and K. F. C. Yiu, Optimal switching for linear quadratic problem of switched systems in discrete time, Automatica, 78 (2017), 185-193.  doi: 10.1016/j.automatica.2016.12.002.  Google Scholar

[26]

F. YangK. L. TeoR. LoxtonV. RehbockB. LiC. Yu and L. Jennings, Visual miser: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.  doi: 10.3934/jimo.2016.12.781.  Google Scholar

[27]

J. ZhaiT. NiuJ. Ye and E. Feng, Optimal control of nonlinear switched system with mixed constraints and its parallel optimization algorithm, Nonlinear Analysis Hybrid Systems, 25 (2017), 21-40.  doi: 10.1016/j.nahs.2017.02.001.  Google Scholar

[28]

C. ZhaoC. WuJ. ChaiX. WangX. YangJ. M. Lee and M. J. Kim, Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty, Applied Soft Computing, 55 (2017), 549-564.  doi: 10.1016/j.asoc.2017.02.009.  Google Scholar

[29]

X. L. ZhuZ. G. Feng and J. W. Peng, Robust design of sensor fusion problem in discrete time, Journal of Industrial and Management Optimization, 13 (2017), 825-834.  doi: 10.3934/jimo.2016048.  Google Scholar

Figure 1.  Optimal weight of the first subsystem obtained by relaxation method and modified relaxation method in Example 1
Figure 2.  Optimal weight of the second subsystem obtained by relaxation method and modified relaxation method in Example 1
Figure 3.  Optimal weight of the third subsystem obtained by relaxation method and modified relaxation method in Example 1
Figure 4.  Optimal solution and truncated solution in Example 1
Figure 5.  Optimal weight of the first subsystem obtained by relaxation method and modified relaxation method in Example 2
Figure 6.  Optimal weight of the second subsystem obtained by relaxation method and modified relaxation method in Example 2
Figure 7.  Optimal weight of the third subsystem obtained by relaxation method and modified relaxation method in Example 2
Figure 8.  Optimal solution and truncated solution in Example 2
[1]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[2]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[3]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[4]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[5]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[6]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[7]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[8]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[9]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[10]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[11]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[12]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[13]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[14]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[15]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[16]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[19]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[20]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (154)
  • HTML views (1394)
  • Cited by (0)

Other articles
by authors

[Back to Top]