
-
Previous Article
Test of copositive tensors
- JIMO Home
- This Issue
-
Next Article
Exact and heuristic methods for personalized display advertising in virtual reality platforms
An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty
1. | School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran |
2. | Faculty of Engineering, Urmia University, Urmia, West Azerbaijan Province, Iran |
The design of agile supply chain networks has attracted more attention in recent years according to the competitive business environment. Further, due to high degree of uncertainty in agile supply chains (SCs), developing robust and efficient decision making tools are of interest. In this study, an integrated approach based on principal component analysis (PCA) and multi-objective possibilistic mixed integer programming (MOPMIP) approaches is proposed to optimally design agile supply chain network under uncertainty. The PCA method is used for ranking and filtering the suppliers, constituting the first layer of the supply chain, based on agility criteria. The proposed MOPMIP model is employed to construct the agile supply chain network under uncertainty. In the proposed MOPMIP model, three objective functions including 1) total costs minimization, 2) total delivery time minimization and 3) maximization of flexibility are considered. An interactive fuzzy solution approach is used to solve the proposed MOPMILP model. Two numerical examples, is conducted to evaluate the performance and efficiency of the proposed integrated approach for agile supply chain network design under uncertainty.
References:
[1] |
H. Abdi and L. J. Williams,
Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics, 2 (2010), 433-459.
doi: 10.1002/wics.101. |
[2] |
R. Abratt and N. Kleyn, Corporate identity, corporate branding and corporate reputations: Reconciliation and integration, European Journal of Marketing, 46 (2012), 1048-1063. Google Scholar |
[3] |
I. M. Ambe,
Agile supply chain: Strategy for competitive advantage, Journal of Global Strategic Management, 4 (2010), 5-17.
doi: 10.20460/JGSM.2010415835. |
[4] |
Y. Aït-Sahalia and D. Xiu, Principal component analysis of high frequency data, Journal of the American Statistical Association, 2017. Google Scholar |
[5] |
R. Babazadeh, J. Razmi and R. Ghodsi, Supply chain network design problem for a new market opportunity in an agile manufacturing system Journal of Industrial Engineering International, 8 (2012), 19pp.
doi: 10.1186/2251-712X-8-19. |
[6] |
R. Babazadeh and J. Razmi,
A robust stochastic programming approach for agile and responsive logistics under operational and disruption risks, International Journal of Logistics Systems and Management, 13 (2012), 458-482.
doi: 10.1504/IJLSM.2012.050158. |
[7] |
M. Bachlaus, M. K. Pandey, C. Mahajan, R. Shankar and M. K. Tiwari, Designing an integrated multi-echelon agile supply chain network: A hybrid taguchi-particle swarm optimization approach Journal of Intelligent Manufacturing, 9 (2008), p747.
doi: 10.1007/s10845-008-0125-1. |
[8] |
B. W. Bolch and C. Huang, Multivariate Statistical Methods for Business and Economics, Prentice-Hall, 1973. Google Scholar |
[9] |
M. J. Braunscheidel and N. C. Suresh,
The organizational antecedents of a firm's supply chain agility for risk mitigation and response, Journal of Operations Management, 27 (2009), 119-140.
doi: 10.1016/j.jom.2008.09.006. |
[10] |
T. A. Brown, Confirmatory Factor Analysis for Applied Research, Guilford Publications, 2014. Google Scholar |
[11] |
H. Carvalho, S. G. Azevedo and V. Cruz-Machado,
Agile and resilient approaches to supply chain management: Influence on performance and competitiveness, Logistics Research, 4 (2012), 49-62.
doi: 10.1007/s12159-012-0064-2. |
[12] |
J. Chai, J. N. Liu and E. W. Ngai,
Application of decision-making techniques in supplier selection: A systematic review of literature, Expert Systems with Applications, 40 (2013), 3872-3885.
doi: 10.1016/j.eswa.2012.12.040. |
[13] |
A. T. Chan, E. W. Ngai and K. K. Moon,
The effects of strategic and manufacturing flexibilities and supply chain agility on firm performance in the fashion industry, European Journal of Operational Research, 259 (2017), 486-499.
doi: 10.1016/j.ejor.2016.11.006. |
[14] |
M. Christopher, R. Lowson and H. Peck, Creating agile supply chains in the fashion industry, International Journal of Retail & Distribution Management, 32 (2004), 367-376. Google Scholar |
[15] |
M. Christopher,
The agile supply chain: Competing in volatile markets, Industrial Marketing Management, 29 (2000), 37-44.
doi: 10.1016/S0019-8501(99)00110-8. |
[16] |
M. Christopher, A. Harrison and R. van Hoek, Creating the agile supply chain: Issues and challenges, in Developments in Logistics and Supply Chain Management, Springer, (2016), 61–68. Google Scholar |
[17] |
N. Costantino, M. Dotoli, M. Falagario, M. P. Fanti and A. M. Mangini,
A model for supply management of agile manufacturing supply chains, International Journal of Production Economics, 135 (2012), 451-457.
doi: 10.1016/j.ijpe.2011.08.021. |
[18] |
L. De Boer, E. Labro and P. Morlacchi, A review of methods supporting supplier selection, European Journal of Purchasing & Supply Management, 7 (2001), 75-89. Google Scholar |
[19] |
G. W. Dickson,
An analysis of vendor selection systems and decisions, European Journal of Marketing, 2 (1996), 5-17.
doi: 10.1111/j.1745-493X.1966.tb00818.x. |
[20] |
D. Dubois and H. Prade,
The mean value of a fuzzy number, Fuzzy Sets and Systems, 24 (1987), 279-300.
doi: 10.1016/0165-0114(87)90028-5. |
[21] |
D. Dubois, E. Kerre, R. Mesiar and H. Prade, Fuzzy interval analysis, in Fundamentals of Fuzzy Sets, Springer, 2000, 483–558. Google Scholar |
[22] |
E. A. Elsayed, A. Shaik Dawood and R. Karthikeyan, Evaluating alternatives through the application of topsis method with entropy weight International Journal of Engineering Trends and Technology (IJETT), 46 (2017).
doi: 10.14445/22315381/IJETT-V46P211. |
[23] |
H. Fargani, W. M. Cheung and R. Hasan, Ranking of factors that underlay the drivers of sustainable manufacturing based on their variation in a sample of UK manufacturing plants, International Journal of Manufacturing Technology and Management (IJMTM), (2017). Google Scholar |
[24] |
S. Fayezi, A. Zutshi and A. O'Loughlin,
Understanding and development of supply chain agility and flexibility: A structured literature review, International Journal of Management Reviews, 19 (2017), 379-407.
doi: 10.1111/ijmr.12096. |
[25] |
M. Fazli-Khalaf, A. Mirzazadeh and M. S. Pishvaee,
A robust fuzzy stochastic programming model for the design of a reliable green closed-loop supply chain network, Human and Ecological Risk Assessment: An International Journal, 23 (2017), 2119-2149.
doi: 10.1080/10807039.2017.1367644. |
[26] |
P. Fortemps and M. Roubens,
Ranking and defuzzification methods based on area compensation, Fuzzy Sets and Systems, 82 (1996), 319-330.
doi: 10.1016/0165-0114(95)00273-1. |
[27] |
A. Ganguly, R. Nilchiani and J. V. Farr,
Evaluating agility in corporate enterprises, International Journal of Production Economics, 118 (2009), 410-423.
doi: 10.1016/j.ijpe.2008.12.009. |
[28] |
S. H. Ghodsypour and C. O'Brien,
A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming, International Journal of Production Economics, 56/57 (1998), 199-212.
doi: 10.1016/S0925-5273(97)00009-1. |
[29] |
N. Gholamian, I. Mahdavi, R. Tavakkoli-Moghaddam and N. Mahdavi-Amiri,
Comprehensive fuzzy multi-objective multi-product multi-site aggregate production planning decisions in a supply chain under uncertainty, Applied Soft Computing, 37 (2015), 585-607.
doi: 10.1016/j.asoc.2015.08.041. |
[30] |
D. M. Gligor and M. C. Holcomb,
Understanding the role of logistics capabilities in achieving supply chain agility: A systematic literature review, Supply Chain Management: An International Journal, 17 (2012), 438-453.
doi: 10.1108/13598541211246594. |
[31] |
A. González,
A study of the ranking function approach through mean values, Fuzzy Sets and Systems, 35 (1990), 29-41.
doi: 10.1016/0165-0114(90)90016-Y. |
[32] |
D. Harrington,
Confirmatory Factor Analysis, Oxford University Press, 2009.
doi: 10.1093/acprof:oso/9780195339888.001.0001. |
[33] |
M. A. Hasan, J. Sarkis and R. Shankarr,
Agility and production flow layouts: An analytical decision analysis, Computers & Industrial Engineering, 62 (2012), 898-907.
doi: 10.1016/j.cie.2011.12.011. |
[34] |
A. Hasani, S. H. Zegordi and E. Nikbakhsh,
Robust closed-loop supply chain network design for perishable goods in agile manufacturing under uncertainty, International Journal of Production Research, 50 (2012), 4649-4669.
doi: 10.1080/00207543.2011.625051. |
[35] |
S. Heilpern,
The expected value of a fuzzy number, Fuzzy Sets and Systems, 47 (1992), 81-86.
doi: 10.1016/0165-0114(92)90062-9. |
[36] |
F. R. Jacobs, R. B. Chase and R. R. Lummus, Operations and Supply Chain Management, McGraw-Hill/Irwin New York, 2014. Google Scholar |
[37] |
M. Jiménez, M. Arenas, A. Bilbao and M. V. Rodríguez,
Linear programming with fuzzy parameters: An interactive method resolution, European Journal of Operational Research, 177 (2007), 1599-1609.
doi: 10.1016/j.ejor.2005.10.002. |
[38] |
M. Jiménez,
Ranking fuzzy numbers through the comparison of its expected intervals, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 4 (1996), 379-388.
doi: 10.1142/S0218488596000226. |
[39] |
T. Jitpaiboon, The Roles of Information Systems Integration in the Supply Chain Integration Context-Firm Perspective, Ph. D thesis, University of Toledo, 2005. Google Scholar |
[40] |
I. T. Jolliffe and J. Cadima, Principal component analysis: A review and recent developments, Phil. Trans. R. Soc. A, 374 (2016), 20150202. Google Scholar |
[41] |
D. Kannan,
Role of multiple stakeholders and the critical success factor theory for the sustainable supplier selection process, International Journal of Production Economics, 195 (2018), 391-418.
doi: 10.1016/j.ijpe.2017.02.020. |
[42] |
K. C. Lam, R. Tao and M. C. K. Lam,
A material supplier selection model for property developers using fuzzy principal component analysis, Automation in Construction, 19 (2010), 608-618.
doi: 10.1016/j.autcon.2010.02.007. |
[43] |
T. Mak and F. Nebebe, Factor analysis and methods of supplier selection, International Journal of Supply Chain Management, 5 (2016), 1-9. Google Scholar |
[44] |
A. W. Min and K. G. Shin, Exploiting multi-channel diversity in spectrum-agile networks,
The 27th Conference on Computer Communications, IEEE, (2008), 1921–1929.
doi: 10.1109/INFOCOM.2008.256. |
[45] |
K. Mukherjee, Modeling and optimization of traditional supplier selection, in Supplier Selection, Springer, 2017, 31–58.
doi: 10.1007/978-81-322-3700-6_2. |
[46] |
D. J. Olive, Principal component analysis, in Robust Multivariate Analysis, Springer, 2017,
189–217.
doi: 10.1007/978-3-319-68253-2_6. |
[47] |
F. Pan and R. Nagi,
Robust supply chain design under uncertain demand in agile manufacturing, Computers & Industrial Engineering, 37 (2010), 668-683.
doi: 10.1016/j.cor.2009.06.017. |
[48] |
F. Pan and R. Nagi,
Multi-echelon supply chain network design in agile manufacturing, Omega, 41 (2013), 969-983.
doi: 10.1016/j.omega.2012.12.004. |
[49] |
M. A. Parra, A. B. Terol, B. P. Gladish and M. V. R. Uría,
Solving a multiobjective possibilistic problem through compromise programming, European Journal of Operational Research, 164 (2005), 748-759.
doi: 10.1016/j.ejor.2003.11.028. |
[50] |
D. Peidro, J. Mula, M. Jiménez and M. del Mar Botella,
A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment, European Journal of Operational Research, 205 (2010), 65-80.
doi: 10.1016/j.ejor.2009.11.031. |
[51] |
A. Petroni and M. Braglia,
Vendor selection using principal component analysis, Journal of Supply Chain Management, 36 (2000), 63-69.
doi: 10.1111/j.1745-493X.2000.tb00078.x. |
[52] |
M. S. Pishvaee and J. Razmi,
Environmental supply chain network design using multi-objective fuzzy mathematical programming, Applied Mathematical Modelling, 36 (2012), 3433-3446.
doi: 10.1016/j.apm.2011.10.007. |
[53] |
M. S. Pishvaee and S. A. Torabi,
A possibilistic programming approach for closed-loop supply chain network design under uncertainty, Fuzzy Sets and Systems, 161 (2010), 2668-2683.
doi: 10.1016/j.fss.2010.04.010. |
[54] |
L. L. Portes and L. A. Aguirre, Matrix formulation and singular-value decomposition algorithm for structured varimax rotation in multivariate singular spectrum analysis, Physical Review E, 93 (2016), 052216.
doi: 10.1103/PhysRevE.93.052216. |
[55] |
J. Razmi, M. Seifoory and M. S. Pishvaee, A fuzzy multi-attribute decision making model for selecting the best supply chain strategy: Lean, agile or leagile, Journal of Industrial Engineering, 45 (2011), 127-142. Google Scholar |
[56] |
J. Razmi and A. Sabbaghnia,
Tracing the impact of non-uniform forecasting methods on the severity of the bullwhip effect in two-and three-level supply chains, International Journal of Management Science and Engineering Management, 10 (2015), 297-304.
doi: 10.1080/17509653.2015.1016132. |
[57] |
P. Rola, D. Kuchta and D. Kopczyk,
Conceptual model of working space for agile (scrum) project team, Journal of Systems and Software, 118 (2016), 49-63.
doi: 10.1016/j.jss.2016.04.071. |
[58] |
C. Rolland-Debord, S. Fry, J. Giovannelli, C. Langlois, N. Bricout, B. Aguilaniu, A. Bellocq, O. Le Rouzic, S. Dominique, A. Delobbe and G. François, Physiologic determinants of exercise capacity in pulmonary langerhans cell histiocytosis: A multidimensional analysis, PloS one, 12 (2017), e0170035. Google Scholar |
[59] |
M. R. G. Samani, S. A. Torabi and S. M. Hosseini-Motlagh, Integrated blood supply chain planning for disaster relief, International Journal of Disaster Risk Reduction, (2017). Google Scholar |
[60] |
J. Sarkis and S. Talluri,
A model for strategic supplier selection, Journal of Supply Chain Management, 38 (2002), 18-28.
doi: 10.1111/j.1745-493X.2002.tb00117.x. |
[61] |
M. R. Shaharudin, K. Govindan, S. Zailani, K. C. Tan and M. Iranmanesh,
Product return management: Linking product returns, closed-loop supply chain activities and the effectiveness of the reverse supply chains, Journal of Cleaner Production, 149 (2017), 1144-1156.
doi: 10.1016/j.jclepro.2017.02.133. |
[62] |
T. P. Shri and N. Sriraam, Comparison of t-test ranking with PCA and SEPCOR feature selection for wake and stage 1 sleep pattern recognition in multichannel electroencephalograms, Biomedical Signal Processing and Control, 31 (2017), 499-512. Google Scholar |
[63] |
Z. A. Sohi and S. A. Torabi, Integrated home video content procurement and distribution planning under uncertainty, Computers & Industrial Engineering, 106 (2017), 329-337. Google Scholar |
[64] |
H. Stadtler, Supply chain management: An overview in Supply Chain Management and Advanced Planning, Springer, Berlin, Heidelberg, 2015, 3–28. Google Scholar |
[65] |
S. Subhash, Applied Multivariate Techniques, John Wily & Sons Inc., Canada, 1996. Google Scholar |
[66] |
R. Suri, QRM and POLCA: A winning combination for manufacturing enterprises in the 21st century, Citeseer, 32 (2003). Google Scholar |
[67] |
D. R. Towill,
Engineering the agile supply chain, Logistics Systems Dynamics Group, (2001), 377-396.
doi: 10.1016/B978-008043567-1/50020-6. |
[68] |
C. A. Weber, J. R. Current and W. Bentonn, Vendor selection criteria and methods, European
Journal of Operational Research, The 27th Conference on Computer Communications, 50
(1991), 2–18.
doi: 10.1016/0377-2217(91)90033-R. |
[69] |
C. Wu and D. Barnes,
Formulating partner selection criteria for agile supply chains: A Dempster-Shafer belief acceptability optimisation approach, International Journal of Production Economics, 125 (2010), 284-293.
doi: 10.1016/j.ijpe.2010.02.010. |
[70] |
R. R. Yager,
A procedure for ordering fuzzy subsets of the unit interval, Information Sciences, 24 (1981), 143-161.
doi: 10.1016/0020-0255(81)90017-7. |
[71] |
C. A. Yauch,
Measuring agility as a performance outcome, Journal of Manufacturing Technology Management, 22 (2011), 384-404.
doi: 10.1108/17410381111112738. |
[72] |
F. You and I. E. Grossmann,
Design of responsive supply chains under demand uncertainty, Computers & Industrial Engineering, 32 (2008), 3090-3111.
doi: 10.1016/j.compchemeng.2008.05.004. |
[73] |
Y. Y. Yusuf, A. Gunasekaran, E. Adeleye and K. Sivayoganathan,
Agile supply chain capabilities: Determinants of competitive objectives, European Journal of Operational Research, 159 (2004), 379-392.
doi: 10.1016/j.ejor.2003.08.022. |
show all references
References:
[1] |
H. Abdi and L. J. Williams,
Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics, 2 (2010), 433-459.
doi: 10.1002/wics.101. |
[2] |
R. Abratt and N. Kleyn, Corporate identity, corporate branding and corporate reputations: Reconciliation and integration, European Journal of Marketing, 46 (2012), 1048-1063. Google Scholar |
[3] |
I. M. Ambe,
Agile supply chain: Strategy for competitive advantage, Journal of Global Strategic Management, 4 (2010), 5-17.
doi: 10.20460/JGSM.2010415835. |
[4] |
Y. Aït-Sahalia and D. Xiu, Principal component analysis of high frequency data, Journal of the American Statistical Association, 2017. Google Scholar |
[5] |
R. Babazadeh, J. Razmi and R. Ghodsi, Supply chain network design problem for a new market opportunity in an agile manufacturing system Journal of Industrial Engineering International, 8 (2012), 19pp.
doi: 10.1186/2251-712X-8-19. |
[6] |
R. Babazadeh and J. Razmi,
A robust stochastic programming approach for agile and responsive logistics under operational and disruption risks, International Journal of Logistics Systems and Management, 13 (2012), 458-482.
doi: 10.1504/IJLSM.2012.050158. |
[7] |
M. Bachlaus, M. K. Pandey, C. Mahajan, R. Shankar and M. K. Tiwari, Designing an integrated multi-echelon agile supply chain network: A hybrid taguchi-particle swarm optimization approach Journal of Intelligent Manufacturing, 9 (2008), p747.
doi: 10.1007/s10845-008-0125-1. |
[8] |
B. W. Bolch and C. Huang, Multivariate Statistical Methods for Business and Economics, Prentice-Hall, 1973. Google Scholar |
[9] |
M. J. Braunscheidel and N. C. Suresh,
The organizational antecedents of a firm's supply chain agility for risk mitigation and response, Journal of Operations Management, 27 (2009), 119-140.
doi: 10.1016/j.jom.2008.09.006. |
[10] |
T. A. Brown, Confirmatory Factor Analysis for Applied Research, Guilford Publications, 2014. Google Scholar |
[11] |
H. Carvalho, S. G. Azevedo and V. Cruz-Machado,
Agile and resilient approaches to supply chain management: Influence on performance and competitiveness, Logistics Research, 4 (2012), 49-62.
doi: 10.1007/s12159-012-0064-2. |
[12] |
J. Chai, J. N. Liu and E. W. Ngai,
Application of decision-making techniques in supplier selection: A systematic review of literature, Expert Systems with Applications, 40 (2013), 3872-3885.
doi: 10.1016/j.eswa.2012.12.040. |
[13] |
A. T. Chan, E. W. Ngai and K. K. Moon,
The effects of strategic and manufacturing flexibilities and supply chain agility on firm performance in the fashion industry, European Journal of Operational Research, 259 (2017), 486-499.
doi: 10.1016/j.ejor.2016.11.006. |
[14] |
M. Christopher, R. Lowson and H. Peck, Creating agile supply chains in the fashion industry, International Journal of Retail & Distribution Management, 32 (2004), 367-376. Google Scholar |
[15] |
M. Christopher,
The agile supply chain: Competing in volatile markets, Industrial Marketing Management, 29 (2000), 37-44.
doi: 10.1016/S0019-8501(99)00110-8. |
[16] |
M. Christopher, A. Harrison and R. van Hoek, Creating the agile supply chain: Issues and challenges, in Developments in Logistics and Supply Chain Management, Springer, (2016), 61–68. Google Scholar |
[17] |
N. Costantino, M. Dotoli, M. Falagario, M. P. Fanti and A. M. Mangini,
A model for supply management of agile manufacturing supply chains, International Journal of Production Economics, 135 (2012), 451-457.
doi: 10.1016/j.ijpe.2011.08.021. |
[18] |
L. De Boer, E. Labro and P. Morlacchi, A review of methods supporting supplier selection, European Journal of Purchasing & Supply Management, 7 (2001), 75-89. Google Scholar |
[19] |
G. W. Dickson,
An analysis of vendor selection systems and decisions, European Journal of Marketing, 2 (1996), 5-17.
doi: 10.1111/j.1745-493X.1966.tb00818.x. |
[20] |
D. Dubois and H. Prade,
The mean value of a fuzzy number, Fuzzy Sets and Systems, 24 (1987), 279-300.
doi: 10.1016/0165-0114(87)90028-5. |
[21] |
D. Dubois, E. Kerre, R. Mesiar and H. Prade, Fuzzy interval analysis, in Fundamentals of Fuzzy Sets, Springer, 2000, 483–558. Google Scholar |
[22] |
E. A. Elsayed, A. Shaik Dawood and R. Karthikeyan, Evaluating alternatives through the application of topsis method with entropy weight International Journal of Engineering Trends and Technology (IJETT), 46 (2017).
doi: 10.14445/22315381/IJETT-V46P211. |
[23] |
H. Fargani, W. M. Cheung and R. Hasan, Ranking of factors that underlay the drivers of sustainable manufacturing based on their variation in a sample of UK manufacturing plants, International Journal of Manufacturing Technology and Management (IJMTM), (2017). Google Scholar |
[24] |
S. Fayezi, A. Zutshi and A. O'Loughlin,
Understanding and development of supply chain agility and flexibility: A structured literature review, International Journal of Management Reviews, 19 (2017), 379-407.
doi: 10.1111/ijmr.12096. |
[25] |
M. Fazli-Khalaf, A. Mirzazadeh and M. S. Pishvaee,
A robust fuzzy stochastic programming model for the design of a reliable green closed-loop supply chain network, Human and Ecological Risk Assessment: An International Journal, 23 (2017), 2119-2149.
doi: 10.1080/10807039.2017.1367644. |
[26] |
P. Fortemps and M. Roubens,
Ranking and defuzzification methods based on area compensation, Fuzzy Sets and Systems, 82 (1996), 319-330.
doi: 10.1016/0165-0114(95)00273-1. |
[27] |
A. Ganguly, R. Nilchiani and J. V. Farr,
Evaluating agility in corporate enterprises, International Journal of Production Economics, 118 (2009), 410-423.
doi: 10.1016/j.ijpe.2008.12.009. |
[28] |
S. H. Ghodsypour and C. O'Brien,
A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming, International Journal of Production Economics, 56/57 (1998), 199-212.
doi: 10.1016/S0925-5273(97)00009-1. |
[29] |
N. Gholamian, I. Mahdavi, R. Tavakkoli-Moghaddam and N. Mahdavi-Amiri,
Comprehensive fuzzy multi-objective multi-product multi-site aggregate production planning decisions in a supply chain under uncertainty, Applied Soft Computing, 37 (2015), 585-607.
doi: 10.1016/j.asoc.2015.08.041. |
[30] |
D. M. Gligor and M. C. Holcomb,
Understanding the role of logistics capabilities in achieving supply chain agility: A systematic literature review, Supply Chain Management: An International Journal, 17 (2012), 438-453.
doi: 10.1108/13598541211246594. |
[31] |
A. González,
A study of the ranking function approach through mean values, Fuzzy Sets and Systems, 35 (1990), 29-41.
doi: 10.1016/0165-0114(90)90016-Y. |
[32] |
D. Harrington,
Confirmatory Factor Analysis, Oxford University Press, 2009.
doi: 10.1093/acprof:oso/9780195339888.001.0001. |
[33] |
M. A. Hasan, J. Sarkis and R. Shankarr,
Agility and production flow layouts: An analytical decision analysis, Computers & Industrial Engineering, 62 (2012), 898-907.
doi: 10.1016/j.cie.2011.12.011. |
[34] |
A. Hasani, S. H. Zegordi and E. Nikbakhsh,
Robust closed-loop supply chain network design for perishable goods in agile manufacturing under uncertainty, International Journal of Production Research, 50 (2012), 4649-4669.
doi: 10.1080/00207543.2011.625051. |
[35] |
S. Heilpern,
The expected value of a fuzzy number, Fuzzy Sets and Systems, 47 (1992), 81-86.
doi: 10.1016/0165-0114(92)90062-9. |
[36] |
F. R. Jacobs, R. B. Chase and R. R. Lummus, Operations and Supply Chain Management, McGraw-Hill/Irwin New York, 2014. Google Scholar |
[37] |
M. Jiménez, M. Arenas, A. Bilbao and M. V. Rodríguez,
Linear programming with fuzzy parameters: An interactive method resolution, European Journal of Operational Research, 177 (2007), 1599-1609.
doi: 10.1016/j.ejor.2005.10.002. |
[38] |
M. Jiménez,
Ranking fuzzy numbers through the comparison of its expected intervals, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 4 (1996), 379-388.
doi: 10.1142/S0218488596000226. |
[39] |
T. Jitpaiboon, The Roles of Information Systems Integration in the Supply Chain Integration Context-Firm Perspective, Ph. D thesis, University of Toledo, 2005. Google Scholar |
[40] |
I. T. Jolliffe and J. Cadima, Principal component analysis: A review and recent developments, Phil. Trans. R. Soc. A, 374 (2016), 20150202. Google Scholar |
[41] |
D. Kannan,
Role of multiple stakeholders and the critical success factor theory for the sustainable supplier selection process, International Journal of Production Economics, 195 (2018), 391-418.
doi: 10.1016/j.ijpe.2017.02.020. |
[42] |
K. C. Lam, R. Tao and M. C. K. Lam,
A material supplier selection model for property developers using fuzzy principal component analysis, Automation in Construction, 19 (2010), 608-618.
doi: 10.1016/j.autcon.2010.02.007. |
[43] |
T. Mak and F. Nebebe, Factor analysis and methods of supplier selection, International Journal of Supply Chain Management, 5 (2016), 1-9. Google Scholar |
[44] |
A. W. Min and K. G. Shin, Exploiting multi-channel diversity in spectrum-agile networks,
The 27th Conference on Computer Communications, IEEE, (2008), 1921–1929.
doi: 10.1109/INFOCOM.2008.256. |
[45] |
K. Mukherjee, Modeling and optimization of traditional supplier selection, in Supplier Selection, Springer, 2017, 31–58.
doi: 10.1007/978-81-322-3700-6_2. |
[46] |
D. J. Olive, Principal component analysis, in Robust Multivariate Analysis, Springer, 2017,
189–217.
doi: 10.1007/978-3-319-68253-2_6. |
[47] |
F. Pan and R. Nagi,
Robust supply chain design under uncertain demand in agile manufacturing, Computers & Industrial Engineering, 37 (2010), 668-683.
doi: 10.1016/j.cor.2009.06.017. |
[48] |
F. Pan and R. Nagi,
Multi-echelon supply chain network design in agile manufacturing, Omega, 41 (2013), 969-983.
doi: 10.1016/j.omega.2012.12.004. |
[49] |
M. A. Parra, A. B. Terol, B. P. Gladish and M. V. R. Uría,
Solving a multiobjective possibilistic problem through compromise programming, European Journal of Operational Research, 164 (2005), 748-759.
doi: 10.1016/j.ejor.2003.11.028. |
[50] |
D. Peidro, J. Mula, M. Jiménez and M. del Mar Botella,
A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment, European Journal of Operational Research, 205 (2010), 65-80.
doi: 10.1016/j.ejor.2009.11.031. |
[51] |
A. Petroni and M. Braglia,
Vendor selection using principal component analysis, Journal of Supply Chain Management, 36 (2000), 63-69.
doi: 10.1111/j.1745-493X.2000.tb00078.x. |
[52] |
M. S. Pishvaee and J. Razmi,
Environmental supply chain network design using multi-objective fuzzy mathematical programming, Applied Mathematical Modelling, 36 (2012), 3433-3446.
doi: 10.1016/j.apm.2011.10.007. |
[53] |
M. S. Pishvaee and S. A. Torabi,
A possibilistic programming approach for closed-loop supply chain network design under uncertainty, Fuzzy Sets and Systems, 161 (2010), 2668-2683.
doi: 10.1016/j.fss.2010.04.010. |
[54] |
L. L. Portes and L. A. Aguirre, Matrix formulation and singular-value decomposition algorithm for structured varimax rotation in multivariate singular spectrum analysis, Physical Review E, 93 (2016), 052216.
doi: 10.1103/PhysRevE.93.052216. |
[55] |
J. Razmi, M. Seifoory and M. S. Pishvaee, A fuzzy multi-attribute decision making model for selecting the best supply chain strategy: Lean, agile or leagile, Journal of Industrial Engineering, 45 (2011), 127-142. Google Scholar |
[56] |
J. Razmi and A. Sabbaghnia,
Tracing the impact of non-uniform forecasting methods on the severity of the bullwhip effect in two-and three-level supply chains, International Journal of Management Science and Engineering Management, 10 (2015), 297-304.
doi: 10.1080/17509653.2015.1016132. |
[57] |
P. Rola, D. Kuchta and D. Kopczyk,
Conceptual model of working space for agile (scrum) project team, Journal of Systems and Software, 118 (2016), 49-63.
doi: 10.1016/j.jss.2016.04.071. |
[58] |
C. Rolland-Debord, S. Fry, J. Giovannelli, C. Langlois, N. Bricout, B. Aguilaniu, A. Bellocq, O. Le Rouzic, S. Dominique, A. Delobbe and G. François, Physiologic determinants of exercise capacity in pulmonary langerhans cell histiocytosis: A multidimensional analysis, PloS one, 12 (2017), e0170035. Google Scholar |
[59] |
M. R. G. Samani, S. A. Torabi and S. M. Hosseini-Motlagh, Integrated blood supply chain planning for disaster relief, International Journal of Disaster Risk Reduction, (2017). Google Scholar |
[60] |
J. Sarkis and S. Talluri,
A model for strategic supplier selection, Journal of Supply Chain Management, 38 (2002), 18-28.
doi: 10.1111/j.1745-493X.2002.tb00117.x. |
[61] |
M. R. Shaharudin, K. Govindan, S. Zailani, K. C. Tan and M. Iranmanesh,
Product return management: Linking product returns, closed-loop supply chain activities and the effectiveness of the reverse supply chains, Journal of Cleaner Production, 149 (2017), 1144-1156.
doi: 10.1016/j.jclepro.2017.02.133. |
[62] |
T. P. Shri and N. Sriraam, Comparison of t-test ranking with PCA and SEPCOR feature selection for wake and stage 1 sleep pattern recognition in multichannel electroencephalograms, Biomedical Signal Processing and Control, 31 (2017), 499-512. Google Scholar |
[63] |
Z. A. Sohi and S. A. Torabi, Integrated home video content procurement and distribution planning under uncertainty, Computers & Industrial Engineering, 106 (2017), 329-337. Google Scholar |
[64] |
H. Stadtler, Supply chain management: An overview in Supply Chain Management and Advanced Planning, Springer, Berlin, Heidelberg, 2015, 3–28. Google Scholar |
[65] |
S. Subhash, Applied Multivariate Techniques, John Wily & Sons Inc., Canada, 1996. Google Scholar |
[66] |
R. Suri, QRM and POLCA: A winning combination for manufacturing enterprises in the 21st century, Citeseer, 32 (2003). Google Scholar |
[67] |
D. R. Towill,
Engineering the agile supply chain, Logistics Systems Dynamics Group, (2001), 377-396.
doi: 10.1016/B978-008043567-1/50020-6. |
[68] |
C. A. Weber, J. R. Current and W. Bentonn, Vendor selection criteria and methods, European
Journal of Operational Research, The 27th Conference on Computer Communications, 50
(1991), 2–18.
doi: 10.1016/0377-2217(91)90033-R. |
[69] |
C. Wu and D. Barnes,
Formulating partner selection criteria for agile supply chains: A Dempster-Shafer belief acceptability optimisation approach, International Journal of Production Economics, 125 (2010), 284-293.
doi: 10.1016/j.ijpe.2010.02.010. |
[70] |
R. R. Yager,
A procedure for ordering fuzzy subsets of the unit interval, Information Sciences, 24 (1981), 143-161.
doi: 10.1016/0020-0255(81)90017-7. |
[71] |
C. A. Yauch,
Measuring agility as a performance outcome, Journal of Manufacturing Technology Management, 22 (2011), 384-404.
doi: 10.1108/17410381111112738. |
[72] |
F. You and I. E. Grossmann,
Design of responsive supply chains under demand uncertainty, Computers & Industrial Engineering, 32 (2008), 3090-3111.
doi: 10.1016/j.compchemeng.2008.05.004. |
[73] |
Y. Y. Yusuf, A. Gunasekaran, E. Adeleye and K. Sivayoganathan,
Agile supply chain capabilities: Determinants of competitive objectives, European Journal of Operational Research, 159 (2004), 379-392.
doi: 10.1016/j.ejor.2003.08.022. |



Row | Input attribute | Row | Input attribute |
1 | Number of facilities | 21 | Working hours |
2 | Staff training | 22 | Bureaucratic |
3 | Education managers | 23 | Defective products |
4 | Standard simple mentation in organizations | 24 | Material requirements planning |
5 | In Stock | 25 | Distribution plan |
6 | Product price | 26 | The geographical location of the factory |
7 | Product variety | 27 | The geographical area covered |
8 | Transportation | 28 | The political situation in the regions covered |
9 | Waste | 29 | Infrastructure |
10 | Market share | 30 | After Sales Service |
11 | Career Opportunities | 31 | Technical Support |
12 | The use of new technology | 32 | Management |
13 | Production Volume | 33 | Response to Customer Request |
14 | Automation | 34 | E-commerce Capability |
15 | Communication System | 35 | JIT |
16 | Delivery | 36 | Packing Ability |
17 | Time of preparation | 37 | Position in the industry |
18 | Lot Size | 38 | Product appearance |
19 | Work in process (WIP) | 39 | Quality |
20 | Specialist operators |
Row | Input attribute | Row | Input attribute |
1 | Number of facilities | 21 | Working hours |
2 | Staff training | 22 | Bureaucratic |
3 | Education managers | 23 | Defective products |
4 | Standard simple mentation in organizations | 24 | Material requirements planning |
5 | In Stock | 25 | Distribution plan |
6 | Product price | 26 | The geographical location of the factory |
7 | Product variety | 27 | The geographical area covered |
8 | Transportation | 28 | The political situation in the regions covered |
9 | Waste | 29 | Infrastructure |
10 | Market share | 30 | After Sales Service |
11 | Career Opportunities | 31 | Technical Support |
12 | The use of new technology | 32 | Management |
13 | Production Volume | 33 | Response to Customer Request |
14 | Automation | 34 | E-commerce Capability |
15 | Communication System | 35 | JIT |
16 | Delivery | 36 | Packing Ability |
17 | Time of preparation | 37 | Position in the industry |
18 | Lot Size | 38 | Product appearance |
19 | Work in process (WIP) | 39 | Quality |
20 | Specialist operators |
Input indicators | Row |
1 | Specialist operators |
2 | The use of new technology |
3 | Material requirements planning |
4 | Distribution plan |
5 | Response to Customer Request |
6 | Technical Support |
7 | E-commerce Capability |
8 | Product variety |
9 | Production Volume |
10 | Transportation |
11 | After Sales Service |
12 | Automation |
13 | Communication System |
14 | JIT |
15 | Quality |
16 | The geographical area covered |
Input indicators | Row |
1 | Specialist operators |
2 | The use of new technology |
3 | Material requirements planning |
4 | Distribution plan |
5 | Response to Customer Request |
6 | Technical Support |
7 | E-commerce Capability |
8 | Product variety |
9 | Production Volume |
10 | Transportation |
11 | After Sales Service |
12 | Automation |
13 | Communication System |
14 | JIT |
15 | Quality |
16 | The geographical area covered |
Output indicators | Row |
1 | Product price |
2 | Bureaucratic |
3 | Delivery time |
4 | Work in Process (WIP) |
Output indicators | Row |
1 | Product price |
2 | Bureaucratic |
3 | Delivery time |
4 | Work in Process (WIP) |
Component | Initial Eigenvalue | ||
Total | Percentage of Variance | Cumulative Percentage | |
1 | 2.074 | 12.965 | 12.965 |
2 | 1.803 | 11.267 | 24.232 |
3 | 1.575 | 9.843 | 34.075 |
4 | 1.380 | 8.625 | 42.700 |
5 | 1.334 | 8.336 | 51.036 |
6 | 1.181 | 7.383 | 58.419 |
7 | 1.027 | 6.418 | 64.836 |
8 | 0.935 | 5.841 | 70.677 |
9 | 0.884 | 5.523 | 76.200 |
10 | 0.793 | 4.959 | 81.159 |
11 | 0.720 | 4.498 | 85.656 |
12 | 0.624 | 3.898 | 89.554 |
13 | 0.580 | 3.624 | 93.178 |
14 | 0.423 | 2.642 | 95.820 |
15 | 0.362 | 2.265 | 98.086 |
16 | 0.306 | 1.914 | 100.000 |
Component | Initial Eigenvalue | ||
Total | Percentage of Variance | Cumulative Percentage | |
1 | 2.074 | 12.965 | 12.965 |
2 | 1.803 | 11.267 | 24.232 |
3 | 1.575 | 9.843 | 34.075 |
4 | 1.380 | 8.625 | 42.700 |
5 | 1.334 | 8.336 | 51.036 |
6 | 1.181 | 7.383 | 58.419 |
7 | 1.027 | 6.418 | 64.836 |
8 | 0.935 | 5.841 | 70.677 |
9 | 0.884 | 5.523 | 76.200 |
10 | 0.793 | 4.959 | 81.159 |
11 | 0.720 | 4.498 | 85.656 |
12 | 0.624 | 3.898 | 89.554 |
13 | 0.580 | 3.624 | 93.178 |
14 | 0.423 | 2.642 | 95.820 |
15 | 0.362 | 2.265 | 98.086 |
16 | 0.306 | 1.914 | 100.000 |
Component | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||
Total | Percentage of Variance | Cumulative Percentage | Total | Percentage of Variance | Cumulative Percentage | |
1 | 2.074 | 12.965 | 12.965 | 1.548 | 9.675 | 9.675 |
2 | 1.803 | 11.267 | 24.232 | 1.547 | 9.672 | 19.347 |
3 | 1.575 | 9.843 | 34.075 | 1.510 | 9.440 | 28.787 |
4 | 1.380 | 8.625 | 42.700 | 1.506 | 9.410 | 38.197 |
5 | 1.334 | 8.336 | 51.036 | 1.460 | 9.126 | 47.324 |
6 | 1.181 | 7.383 | 58.419 | 1.401 | 8.757 | 56.081 |
7 | 1.027 | 6.418 | 64.836 | 1.401 | 8.755 | 64.836 |
Component | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||
Total | Percentage of Variance | Cumulative Percentage | Total | Percentage of Variance | Cumulative Percentage | |
1 | 2.074 | 12.965 | 12.965 | 1.548 | 9.675 | 9.675 |
2 | 1.803 | 11.267 | 24.232 | 1.547 | 9.672 | 19.347 |
3 | 1.575 | 9.843 | 34.075 | 1.510 | 9.440 | 28.787 |
4 | 1.380 | 8.625 | 42.700 | 1.506 | 9.410 | 38.197 |
5 | 1.334 | 8.336 | 51.036 | 1.460 | 9.126 | 47.324 |
6 | 1.181 | 7.383 | 58.419 | 1.401 | 8.757 | 56.081 |
7 | 1.027 | 6.418 | 64.836 | 1.401 | 8.755 | 64.836 |
Variables | Components | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
X1 | 0.042 | -0.192 | 0.615 | -0.211 | 0.159 | -0.273 | -0.029 |
X2 | -0.175 | 0.176 | -0.015 | -0.065 | -0.709 | -0.101 | -0.061 |
X3 | -0.083 | -0.096 | -0.145 | 0.479 | -0.440 | 0.219 | -0.067 |
X4 | 0.120 | 0.177 | -0.220 | 0.609 | 0.221 | -0.251 | -0.108 |
X5 | -0.208 | -0.827 | 0.065 | 0.139 | 0.048 | 0.263 | 0.109 |
X6 | -0.223 | 0.571 | -0.207 | 0.099 | 0.256 | 0.182 | 0.418 |
X7 | 0.133 | -0.134 | 0.205 | 0.753 | -0.070 | 0.073 | 0.037 |
X8 | -0.073 | 0.004 | -0.090 | -0.018 | -0.016 | -0.729 | -0.123 |
X9 | 0.841 | 0.035 | 0.135 | 0.022 | 0.083 | -0.011 | 0.014 |
X10 | 0.551 | -0.016 | -0.100 | 0.309 | -0.035 | 0.370 | -0.010 |
X11 | -0.110 | 0.228 | 0.695 | 0.221 | 0.190 | 0.141 | -0.097 |
X12 | -0.258 | 0.541 | 0.155 | 0.034 | -0.283 | 0.292 | 0.244 |
X13 | 0.175 | -0.166 | -0.147 | -0.281 | 0.151 | 0.506 | -0.591 |
X14 | -0.177 | 0.115 | -0.637 | 0.014 | 0.262 | -0.176 | -0.120 |
X15 | -0.464 | 0.159 | 0.031 | -0.086 | 0.629 | -0.029 | -0.048 |
X16 | 0.111 | 0.005 | -0.030 | -0.163 | 0.072 | 0.191 | 0.861 |
Variables | Components | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
X1 | 0.042 | -0.192 | 0.615 | -0.211 | 0.159 | -0.273 | -0.029 |
X2 | -0.175 | 0.176 | -0.015 | -0.065 | -0.709 | -0.101 | -0.061 |
X3 | -0.083 | -0.096 | -0.145 | 0.479 | -0.440 | 0.219 | -0.067 |
X4 | 0.120 | 0.177 | -0.220 | 0.609 | 0.221 | -0.251 | -0.108 |
X5 | -0.208 | -0.827 | 0.065 | 0.139 | 0.048 | 0.263 | 0.109 |
X6 | -0.223 | 0.571 | -0.207 | 0.099 | 0.256 | 0.182 | 0.418 |
X7 | 0.133 | -0.134 | 0.205 | 0.753 | -0.070 | 0.073 | 0.037 |
X8 | -0.073 | 0.004 | -0.090 | -0.018 | -0.016 | -0.729 | -0.123 |
X9 | 0.841 | 0.035 | 0.135 | 0.022 | 0.083 | -0.011 | 0.014 |
X10 | 0.551 | -0.016 | -0.100 | 0.309 | -0.035 | 0.370 | -0.010 |
X11 | -0.110 | 0.228 | 0.695 | 0.221 | 0.190 | 0.141 | -0.097 |
X12 | -0.258 | 0.541 | 0.155 | 0.034 | -0.283 | 0.292 | 0.244 |
X13 | 0.175 | -0.166 | -0.147 | -0.281 | 0.151 | 0.506 | -0.591 |
X14 | -0.177 | 0.115 | -0.637 | 0.014 | 0.262 | -0.176 | -0.120 |
X15 | -0.464 | 0.159 | 0.031 | -0.086 | 0.629 | -0.029 | -0.048 |
X16 | 0.111 | 0.005 | -0.030 | -0.163 | 0.072 | 0.191 | 0.861 |
Supplier | Score | Supplier | Score | Supplier | Score | Supplier | Score |
1 | -0.44143 | 16 | -0.45093 | 31 | -0.70673 | 46 | 0.22046 |
2 | -0.39948 | 17 | -0.16193 | 32 | 0.52357 | 47 | 0.646209 |
3 | 0.079517 | 18 | 0.41908 | 33 | 0.574339 | 48 | -0.2407 |
4 | -0.01854 | 19 | -0.05046 | 34 | 0.054961 | 49 | 0.430716 |
5 | 0.06819 | 20 | 0.010264 | 35 | -0.3108 | 50 | 0.175306 |
6 | -0.16339 | 21 | -0.29805 | 36 | -0.29681 | 51 | -0.12202 |
7 | -0.47472 | 22 | 0.283236 | 37 | 0.379933 | 52 | 0.065461 |
8 | -0.26409 | 23 | -0.10214 | 38 | 0.083386 | 53 | -0.80726 |
9 | 0.359434 | 24 | -0.3874 | 39 | -0.11785 | 54 | -0.19505 |
10 | -0.48728 | 25 | 0.278027 | 40 | 0.092893 | 55 | 0.258526 |
11 | 0.044161 | 26 | 0.196247 | 41 | -0.19233 | 56 | 0.570286 |
12 | 0.50004 | 27 | 0.194767 | 42 | 0.121639 | 57 | 0.265066 |
13 | 1.064131 | 28 | 0.009783 | 43 | -0.39538 | 58 | 0.098087 |
14 | -0.72305 | 29 | -0.08439 | 44 | 0.676464 | 59 | -0.50213 |
15 | -0.19635 | 30 | 0.266653 | 45 | -0.02721 | 60 | -0.39293 |
Supplier | Score | Supplier | Score | Supplier | Score | Supplier | Score |
1 | -0.44143 | 16 | -0.45093 | 31 | -0.70673 | 46 | 0.22046 |
2 | -0.39948 | 17 | -0.16193 | 32 | 0.52357 | 47 | 0.646209 |
3 | 0.079517 | 18 | 0.41908 | 33 | 0.574339 | 48 | -0.2407 |
4 | -0.01854 | 19 | -0.05046 | 34 | 0.054961 | 49 | 0.430716 |
5 | 0.06819 | 20 | 0.010264 | 35 | -0.3108 | 50 | 0.175306 |
6 | -0.16339 | 21 | -0.29805 | 36 | -0.29681 | 51 | -0.12202 |
7 | -0.47472 | 22 | 0.283236 | 37 | 0.379933 | 52 | 0.065461 |
8 | -0.26409 | 23 | -0.10214 | 38 | 0.083386 | 53 | -0.80726 |
9 | 0.359434 | 24 | -0.3874 | 39 | -0.11785 | 54 | -0.19505 |
10 | -0.48728 | 25 | 0.278027 | 40 | 0.092893 | 55 | 0.258526 |
11 | 0.044161 | 26 | 0.196247 | 41 | -0.19233 | 56 | 0.570286 |
12 | 0.50004 | 27 | 0.194767 | 42 | 0.121639 | 57 | 0.265066 |
13 | 1.064131 | 28 | 0.009783 | 43 | -0.39538 | 58 | 0.098087 |
14 | -0.72305 | 29 | -0.08439 | 44 | 0.676464 | 59 | -0.50213 |
15 | -0.19635 | 30 | 0.266653 | 45 | -0.02721 | 60 | -0.39293 |
Parameter | Value | Parameter | Value |
| | | |
| |||
| |||
| |||
| |||
| |||
| |||
| |||
| |||
| |||
| |||
| |||
|
Parameter | Value | Parameter | Value |
| | | |
| |||
| |||
| |||
| |||
| |||
| |||
| |||
| |||
| |||
| |||
| |||
|
r1 | r2 | r3 | Problem No. | Obj1 | Obj2 | Obj3 | CPU time (Sec) |
1 | 0 | 0 | 1 | 3.69E+11 | 1.38E+08 | 0.00E+00 | 134 |
2 | 3.82E+12 | 1.26E+09 | 0.00E+00 | 646 | |||
0 | 1 | 0 | 1 | 6.61E+12 | 2.44E+07 | 0.00E+00 | 164 |
2 | 2.50E+15 | 2.53E+08 | 0.00E+00 | 655 | |||
0 | 0 | 1 | 1 | 6.61E+12 | 1.38E+08 | 7.46E+07 | 132 |
2 | 2.50E+15 | 1.26E+09 | 3.74E+11 | 692 | |||
0.45 | 0.45 | 0.1 | 1 | 3.39E+12 | 7.89E+07 | 1.42E+07 | 210 |
2 | 1.13E+15 | 6.58E+08 | 8.33E+10 | 512 | |||
0.35 | 0.35 | 0.3 | 1 | 3.99E+12 | 9.30E+07 | 2.76E+07 | 167 |
2 | 1.30E+15 | 7.29E+08 | 1.46E+11 | 472 | |||
0.25 | 0.25 | 0.5 | 1 | 4.55E+12 | 1.06E+08 | 4.70E+07 | 173 |
2 | 1.58E+15 | 9.41E+08 | 2.31E+11 | 627 | |||
0.15 | 0.15 | 0.7 | 1 | 5.50E+12 | 1.16E+08 | 5.67E+07 | 159 |
2 | 1.80E+15 | 9.91E+08 | 3.07E+11 | 679 | |||
0.05 | 0.05 | 0.9 | 1 | 6.20E+12 | 1.25E+08 | 7.02E+07 | 134 |
2 | 2.25E+15 | 1.13E+09 | 3.48E+11 | 646 | |||
0.2 | 0.3 | 0.5 | 1 | 5.20E+12 | 9.83E+07 | 4.78E+07 | 164 |
2 | 1.68E+15 | 8.90E+08 | 2.25E+11 | 655 | |||
0.2 | 0.5 | 0.3 | 1 | 4.93E+12 | 7.21E+07 | 2.76E+07 | 132 |
2 | 1.70E+15 | 6.48E+08 | 1.23E+11 | 690 | |||
0.3 | 0.2 | 0.5 | 1 | 4.38E+12 | 1.13E+08 | 4.63E+07 | 210 |
2 | 1.53E+15 | 9.81E+08 | 2.31E+11 | 512 | |||
0.3 | 0.5 | 0.2 | 1 | 4.24E+12 | 6.65E+07 | 1.72E+07 | 167 |
2 | 1.53E+15 | 6.38E+08 | 8.61E+10 | 472 | |||
0.5 | 0.2 | 0.3 | 1 | 3.12E+12 | 1.08E+08 | 2.84E+07 | 173 |
2 | 9.27E+14 | 9.84E+08 | 1.12E+11 | 627 | |||
0.5 | 0.3 | 0.2 | 1 | 2.93E+12 | 9.59E+07 | 1.79E+07 | 159 |
2 | 9.47E+14 | 8.90E+08 | 9.36E+10 | 679 |
r1 | r2 | r3 | Problem No. | Obj1 | Obj2 | Obj3 | CPU time (Sec) |
1 | 0 | 0 | 1 | 3.69E+11 | 1.38E+08 | 0.00E+00 | 134 |
2 | 3.82E+12 | 1.26E+09 | 0.00E+00 | 646 | |||
0 | 1 | 0 | 1 | 6.61E+12 | 2.44E+07 | 0.00E+00 | 164 |
2 | 2.50E+15 | 2.53E+08 | 0.00E+00 | 655 | |||
0 | 0 | 1 | 1 | 6.61E+12 | 1.38E+08 | 7.46E+07 | 132 |
2 | 2.50E+15 | 1.26E+09 | 3.74E+11 | 692 | |||
0.45 | 0.45 | 0.1 | 1 | 3.39E+12 | 7.89E+07 | 1.42E+07 | 210 |
2 | 1.13E+15 | 6.58E+08 | 8.33E+10 | 512 | |||
0.35 | 0.35 | 0.3 | 1 | 3.99E+12 | 9.30E+07 | 2.76E+07 | 167 |
2 | 1.30E+15 | 7.29E+08 | 1.46E+11 | 472 | |||
0.25 | 0.25 | 0.5 | 1 | 4.55E+12 | 1.06E+08 | 4.70E+07 | 173 |
2 | 1.58E+15 | 9.41E+08 | 2.31E+11 | 627 | |||
0.15 | 0.15 | 0.7 | 1 | 5.50E+12 | 1.16E+08 | 5.67E+07 | 159 |
2 | 1.80E+15 | 9.91E+08 | 3.07E+11 | 679 | |||
0.05 | 0.05 | 0.9 | 1 | 6.20E+12 | 1.25E+08 | 7.02E+07 | 134 |
2 | 2.25E+15 | 1.13E+09 | 3.48E+11 | 646 | |||
0.2 | 0.3 | 0.5 | 1 | 5.20E+12 | 9.83E+07 | 4.78E+07 | 164 |
2 | 1.68E+15 | 8.90E+08 | 2.25E+11 | 655 | |||
0.2 | 0.5 | 0.3 | 1 | 4.93E+12 | 7.21E+07 | 2.76E+07 | 132 |
2 | 1.70E+15 | 6.48E+08 | 1.23E+11 | 690 | |||
0.3 | 0.2 | 0.5 | 1 | 4.38E+12 | 1.13E+08 | 4.63E+07 | 210 |
2 | 1.53E+15 | 9.81E+08 | 2.31E+11 | 512 | |||
0.3 | 0.5 | 0.2 | 1 | 4.24E+12 | 6.65E+07 | 1.72E+07 | 167 |
2 | 1.53E+15 | 6.38E+08 | 8.61E+10 | 472 | |||
0.5 | 0.2 | 0.3 | 1 | 3.12E+12 | 1.08E+08 | 2.84E+07 | 173 |
2 | 9.27E+14 | 9.84E+08 | 1.12E+11 | 627 | |||
0.5 | 0.3 | 0.2 | 1 | 2.93E+12 | 9.59E+07 | 1.79E+07 | 159 |
2 | 9.47E+14 | 8.90E+08 | 9.36E+10 | 679 |
Index | Razmi et al. (2011) | Yauch (2011) | Ghodsypour and O'Brien (1998) | Min and Shin (2008) | Weber et al. (1991) | Abratt and Kleyn (2012) | Dickson (1996) | Prater et al. (2001) | Kassaee et al. (2014) | Dahmardeh et al. (2010) | Kumar et al. (2011) | Aktepe et al. (1999) | Lin (2009) | Chan and Thong (2009) | This study |
1 | * | * | * | * | * | * | * | * | * | * | |||||
2 | * | * | * | * | * | * | * | * | * | ||||||
3 | * | * | * | * | * | * | * | * | * | ||||||
4 | * | * | * | * | * | * | * | * | * | ||||||
5 | * | * | * | * | |||||||||||
6 | * | * | * | * | * | * | * | * | * | * | * | * | * | ||
7 | * | * | * | * | * | * | * | * | * | ||||||
8 | * | * | * | * | |||||||||||
9 | * | * | * | * | * | * | * | * | * | ||||||
10 | * | * | * | * | * | * | * | * | |||||||
11 | * | * | * | * | * | * | * | * | |||||||
12 | * | * | * | * | * | * | * | * | * | * | |||||
13 | * | * | * | * | * | * | * | * | * | ||||||
14 | * | * | * | * | * | * | * | * | * | ||||||
15 | * | * | * | * | * | * | * | * | * | * | * | * | |||
16 | * | * | * | * | * | * | * | * | * | * | |||||
17 | * | * | * | * | * | * | * | * | |||||||
18 | * | * | * | * | * | * | * | * | * | ||||||
19 | * | * | * | * | * | * | * | * | * | ||||||
20 | * | * | * | * | * | * | * | * | |||||||
21 | * | * | * | * | * | * | * | * | |||||||
22 | * | * | * | * | * | * | * | * | * | ||||||
23 | * | * | * | * | * | * | * | * | * | ||||||
24 | * | * | * | * | * | * | * | * | * | ||||||
25 | * | * | * | ||||||||||||
26 | * | * | * | * | * | * | * | ||||||||
27 | * | * | * | * | * | * | * | ||||||||
28 | * | * | * | * | |||||||||||
29 | * | ||||||||||||||
30 | * | * | * | * | * | * | * | * | * | * | * | * | |||
31 | * | * | * | * | * | * | * | * | * | * | * | * | |||
32 | * | * | * | * | * | * | * | * | |||||||
33 | * | * | * | * | * | * | * | * | |||||||
34 | * | * | * | * | * | * | * | * | |||||||
35 | |||||||||||||||
36 | * | * | * | * | * | * | * | * | * | ||||||
37 | * | * | * | * | * | * | * | * | * | * | * | * | |||
38 | * | * | * | * | * | * | * | * | * | ||||||
39 | * | * | * | * | * | * | * | * | * | * | * | * | * |
Index | Razmi et al. (2011) | Yauch (2011) | Ghodsypour and O'Brien (1998) | Min and Shin (2008) | Weber et al. (1991) | Abratt and Kleyn (2012) | Dickson (1996) | Prater et al. (2001) | Kassaee et al. (2014) | Dahmardeh et al. (2010) | Kumar et al. (2011) | Aktepe et al. (1999) | Lin (2009) | Chan and Thong (2009) | This study |
1 | * | * | * | * | * | * | * | * | * | * | |||||
2 | * | * | * | * | * | * | * | * | * | ||||||
3 | * | * | * | * | * | * | * | * | * | ||||||
4 | * | * | * | * | * | * | * | * | * | ||||||
5 | * | * | * | * | |||||||||||
6 | * | * | * | * | * | * | * | * | * | * | * | * | * | ||
7 | * | * | * | * | * | * | * | * | * | ||||||
8 | * | * | * | * | |||||||||||
9 | * | * | * | * | * | * | * | * | * | ||||||
10 | * | * | * | * | * | * | * | * | |||||||
11 | * | * | * | * | * | * | * | * | |||||||
12 | * | * | * | * | * | * | * | * | * | * | |||||
13 | * | * | * | * | * | * | * | * | * | ||||||
14 | * | * | * | * | * | * | * | * | * | ||||||
15 | * | * | * | * | * | * | * | * | * | * | * | * | |||
16 | * | * | * | * | * | * | * | * | * | * | |||||
17 | * | * | * | * | * | * | * | * | |||||||
18 | * | * | * | * | * | * | * | * | * | ||||||
19 | * | * | * | * | * | * | * | * | * | ||||||
20 | * | * | * | * | * | * | * | * | |||||||
21 | * | * | * | * | * | * | * | * | |||||||
22 | * | * | * | * | * | * | * | * | * | ||||||
23 | * | * | * | * | * | * | * | * | * | ||||||
24 | * | * | * | * | * | * | * | * | * | ||||||
25 | * | * | * | ||||||||||||
26 | * | * | * | * | * | * | * | ||||||||
27 | * | * | * | * | * | * | * | ||||||||
28 | * | * | * | * | |||||||||||
29 | * | ||||||||||||||
30 | * | * | * | * | * | * | * | * | * | * | * | * | |||
31 | * | * | * | * | * | * | * | * | * | * | * | * | |||
32 | * | * | * | * | * | * | * | * | |||||||
33 | * | * | * | * | * | * | * | * | |||||||
34 | * | * | * | * | * | * | * | * | |||||||
35 | |||||||||||||||
36 | * | * | * | * | * | * | * | * | * | ||||||
37 | * | * | * | * | * | * | * | * | * | * | * | * | |||
38 | * | * | * | * | * | * | * | * | * | ||||||
39 | * | * | * | * | * | * | * | * | * | * | * | * | * |
No. | In1 | In2 | In3 | In4 | In5 | In6 | In7 | In8 | In9 | In10 | In11 | In12 | In13 | In14 | In15 | In16 |
1 | 0.54 | 0.82 | 0.5 | 0.62 | 0.75 | 0.45 | 0.62 | 0.64 | 0.71 | 0.6 | 0.5 | 0.57 | 0.52 | 0.35 | 0.23 | 0.6 |
2 | 0.5 | 0.04 | 0.63 | 0.63 | 0.95 | 0.46 | 0.6 | 0.76 | 0.4 | 0.77 | 0.5 | 0.6 | 0.8 | 0.53 | 0.38 | 0.47 |
3 | 0.27 | 0.66 | 0.72 | 0.97 | 0.93 | 0.48 | 0.78 | 0.12 | 0.37 | 0.78 | 0.68 | 0.63 | 0.8 | 0.35 | 0.12 | 0.33 |
4 | 0.43 | 0.34 | 0.71 | 0.75 | 0.92 | 0.56 | 0.72 | 0.44 | 0.53 | 0.68 | 0.64 | 0.68 | 0.72 | 0.37 | 0.32 | 0.3 |
5 | 0.72 | 0.13 | 0.54 | 0.73 | 0.68 | 0.5 | 0.52 | 0.65 | 0.71 | 0.79 | 0.62 | 0.61 | 0.54 | 0.55 | 0.19 | 0.35 |
6 | 0.71 | 0.45 | 0.81 | 0.52 | 0.9 | 0.52 | 0.55 | 0.02 | 0.31 | 0.72 | 0.7 | 0.65 | 0.7 | 0.34 | 0.1 | 0.34 |
7 | 0.5 | 0.43 | 0.89 | 0.94 | 0.85 | 0.41 | 0.58 | 0.5 | 0.58 | 0.61 | 0.63 | 0.53 | 0.76 | 0.52 | 0.76 | 0.34 |
8 | 0.34 | 0.77 | 0.74 | 0.55 | 0.74 | 0.42 | 0.7 | 0.06 | 0.8 | 0.76 | 0.4 | 0.63 | 0.79 | 0.44 | 0.24 | 0.49 |
9 | 0.52 | 0.29 | 0.86 | 0.57 | 0.73 | 0.62 | 0.59 | 0.31 | 0.71 | 0.71 | 0.65 | 0.65 | 0.77 | 0.46 | 0.74 | 0.69 |
10 | 0.39 | 0.58 | 0.65 | 0.76 | 0.67 | 0.66 | 0.62 | 0.4 | 0.21 | 0.61 | 0.42 | 0.6 | 0.52 | 0.56 | 0.94 | 0.36 |
11 | 0.4 | 0.53 | 0.97 | 0.81 | 0.96 | 0.47 | 0.76 | 0.17 | 0.69 | 0.77 | 0.42 | 0.74 | 0.67 | 0.24 | 0.24 | 0.51 |
12 | 0.58 | 0.07 | 0.75 | 0.54 | 0.65 | 0.6 | 0.53 | 0.1 | 0.86 | 0.72 | 0.63 | 0.74 | 0.7 | 0.3 | 0.06 | 0.55 |
13 | 0.4 | 0.12 | 0.62 | 0.87 | 0.62 | 0.7 | 0.73 | 0.04 | 0.62 | 0.79 | 0.6 | 0.8 | 0.79 | 0.21 | 0.59 | 0.64 |
14 | 0.34 | 0.81 | 0.87 | 0.86 | 0.63 | 0.67 | 0.52 | 0.94 | 0.2 | 0.73 | 0.49 | 0.52 | 0.77 | 0.5 | 0.22 | 0.32 |
15 | 0.8 | 0.73 | 0.89 | 0.5 | 0.8 | 0.59 | 0.58 | 0.94 | 0.26 | 0.74 | 0.65 | 0.62 | 0.57 | 0.1 | 0.44 | 0.52 |
16 | 0.62 | 0.27 | 0.57 | 0.89 | 1.00 | 0.44 | 0.7 | 0.67 | 0.2 | 0.62 | 0.44 | 0.56 | 0.59 | 0.41 | 0.86 | 0.65 |
17 | 0.26 | 0.01 | 0.86 | 0.71 | 0.91 | 0.51 | 0.54 | 0.61 | 0.37 | 0.8 | 0.42 | 0.64 | 0.65 | 0.29 | 0.37 | 0.66 |
18 | 0.33 | 0.63 | 0.96 | 0.93 | 0.61 | 0.65 | 0.73 | 0.23 | 0.44 | 0.71 | 0.7 | 0.64 | 0.54 | 0.52 | 0.17 | 0.63 |
19 | 0.5 | 0.54 | 0.91 | 0.86 | 0.86 | 0.53 | 0.74 | 0.61 | 0.65 | 0.71 | 0.57 | 0.61 | 0.74 | 0.55 | 0.94 | 0.48 |
21 | 0.33 | 0.89 | 0.68 | 0.62 | 0.81 | 0.59 | 0.51 | 0.38 | 0.51 | 0.75 | 0.51 | 0.77 | 0.79 | 0.41 | 0.86 | 0.35 |
22 | 0.61 | 0.4 | 0.56 | 0.54 | 0.83 | 0.7 | 0.53 | 0.37 | 0.63 | 0.7 | 0.56 | 0.64 | 0.58 | 0.33 | 0.97 | 0.67 |
23 | 0.68 | 0.84 | 0.98 | 0.9 | 0.88 | 0.44 | 0.69 | 0.03 | 0.6 | 0.74 | 0.43 | 0.59 | 0.72 | 0.14 | 0.25 | 0.61 |
24 | 0.41 | 0.81 | 0.81 | 0.95 | 0.73 | 0.46 | 0.77 | 0.66 | 0.5 | 0.68 | 0.47 | 0.63 | 0.69 | 0.23 | 0.31 | 0.3 |
25 | 0.27 | 0.44 | 0.63 | 0.55 | 0.94 | 0.69 | 0.72 | 0.18 | 0.28 | 0.74 | 0.61 | 0.71 | 0.58 | 0.21 | 0.00 | 0.59 |
26 | 0.28 | 0.37 | 0.53 | 0.55 | 0.85 | 0.47 | 0.68 | 0.33 | 0.75 | 0.78 | 0.46 | 0.65 | 0.67 | 0.18 | 0.35 | 0.7 |
27 | 0.64 | 0.79 | 0.63 | 0.7 | 0.89 | 0.45 | 0.57 | 0.15 | 0.69 | 0.77 | 0.66 | 0.71 | 0.65 | 0.25 | 0.55 | 0.52 |
28 | 0.31 | 0.89 | 0.99 | 0.62 | 0.67 | 0.6 | 0.79 | 0.25 | 0.38 | 0.72 | 0.51 | 0.8 | 0.54 | 0.39 | 0.11 | 0.55 |
29 | 0.6 | 0.02 | 0.76 | 0.73 | 0.64 | 0.7 | 0.5 | 0.67 | 0.53 | 0.64 | 0.42 | 0.79 | 0.62 | 0.45 | 0.99 | 0.36 |
30 | 0.42 | 0.23 | 0.76 | 0.9 | 0.81 | 0.66 | 0.79 | 0.96 | 0.69 | 0.78 | 0.56 | 0.51 | 0.76 | 0.2 | 0.51 | 0.36 |
31 | 0.8 | 0.48 | 0.8 | 0.51 | 0.83 | 0.43 | 0.66 | 0.84 | 0.3 | 0.78 | 0.48 | 0.58 | 0.69 | 0.48 | 0.12 | 0.31 |
32 | 0.58 | 0.05 | 0.66 | 0.6 | 0.73 | 0.61 | 0.73 | 0.23 | 0.87 | 0.74 | 0.49 | 0.67 | 0.77 | 0.32 | 0.03 | 0.68 |
33 | 0.57 | 0.21 | 0.86 | 0.71 | 0.64 | 0.54 | 0.78 | 0.45 | 0.55 | 0.74 | 0.68 | 0.77 | 0.56 | 0.31 | 0.99 | 0.41 |
34 | 0.76 | 0.63 | 0.65 | 0.93 | 0.66 | 0.44 | 0.68 | 0.99 | 0.75 | 0.72 | 0.52 | 0.8 | 0.5 | 0.2 | 0.5 | 0.38 |
35 | 0.28 | 0.04 | 0.71 | 0.67 | 0.72 | 0.43 | 0.57 | 0.44 | 0.72 | 0.71 | 0.45 | 0.5 | 0.75 | 0.41 | 0.29 | 0.47 |
36 | 0.45 | 0.75 | 0.87 | 0.7 | 0.62 | 0.41 | 0.57 | 0.92 | 0.63 | 0.73 | 0.62 | 0.78 | 0.67 | 0.34 | 0.36 | 0.35 |
37 | 0.73 | 0.1 | 0.75 | 0.98 | 0.73 | 0.55 | 0.56 | 0.34 | 0.75 | 0.69 | 0.62 | 0.52 | 0.73 | 0.23 | 0.61 | 0.57 |
38 | 0.75 | 0.2 | 0.75 | 0.72 | 0.95 | 0.51 | 0.67 | 0.72 | 0.46 | 0.72 | 0.66 | 0.66 | 0.75 | 0.49 | 0.91 | 0.58 |
39 | 0.8 | 0.98 | 0.52 | 0.86 | 0.86 | 0.68 | 0.5 | 0.31 | 0.69 | 0.65 | 0.63 | 0.64 | 0.76 | 0.17 | 0.27 | 0.43 |
41 | 0.33 | 0.44 | 0.84 | 0.84 | 0.68 | 0.7 | 0.58 | 0.98 | 0.37 | 0.6 | 0.5 | 0.78 | 0.54 | 0.52 | 0.27 | 0.7 |
42 | 0.66 | 0.97 | 0.59 | 0.7 | 0.78 | 0.59 | 0.77 | 0.72 | 0.44 | 0.68 | 0.67 | 0.71 | 0.66 | 0.16 | 0.34 | 0.54 |
43 | 0.32 | 0.72 | 0.75 | 0.58 | 0.73 | 0.58 | 0.56 | 0.26 | 0.21 | 0.62 | 0.51 | 0.66 | 0.78 | 0.28 | 0.62 | 0.62 |
44 | 0.52 | 0.17 | 0.56 | 0.99 | 0.76 | 0.65 | 0.77 | 0.59 | 0.46 | 0.73 | 0.67 | 0.67 | 0.5 | 0.41 | 0.87 | 0.56 |
45 | 0.59 | 0.53 | 0.8 | 0.78 | 0.93 | 0.46 | 0.71 | 0.07 | 0.78 | 0.66 | 0.52 | 0.59 | 0.68 | 0.16 | 0.71 | 0.36 |
46 | 0.46 | 0.01 | 0.77 | 0.77 | 0.99 | 0.5 | 0.71 | 0.76 | 0.9 | 0.78 | 0.59 | 0.6 | 0.79 | 0.48 | 0.46 | 0.54 |
47 | 0.79 | 0.07 | 0.82 | 0.68 | 0.81 | 0.59 | 0.74 | 0.3 | 0.64 | 0.75 | 0.65 | 0.62 | 0.72 | 0.12 | 0.41 | 0.6 |
48 | 0.41 | 0.18 | 0.64 | 0.59 | 0.79 | 0.46 | 0.73 | 0.89 | 0.76 | 0.64 | 0.62 | 0.54 | 0.58 | 0.53 | 0.22 | 0.41 |
49 | 0.45 | 0.09 | 0.53 | 0.86 | 0.65 | 0.64 | 0.74 | 0.27 | 0.28 | 0.77 | 0.62 | 0.58 | 0.71 | 0.46 | 0.84 | 0.4 |
50 | 0.4 | 0.49 | 0.91 | 0.62 | 0.88 | 0.58 | 0.75 | 0.39 | 0.35 | 0.71 | 0.65 | 0.78 | 0.64 | 0.13 | 0.39 | 0.44 |
51 | 0.66 | 0.47 | 0.71 | 0.61 | 0.67 | 0.57 | 0.66 | 0.02 | 0.31 | 0.6 | 0.61 | 0.75 | 0.76 | 0.51 | 0.69 | 0.35 |
52 | 0.62 | 0.42 | 0.81 | 0.54 | 0.93 | 0.54 | 0.52 | 0.11 | 0.22 | 0.69 | 0.68 | 0.79 | 0.62 | 0.35 | 0.55 | 0.69 |
53 | 0.7 | 0.93 | 0.66 | 0.52 | 0.9 | 0.45 | 0.57 | 0.65 | 0.31 | 0.64 | 0.56 | 0.58 | 0.8 | 0.23 | 0.25 | 0.43 |
54 | 0.25 | 0.91 | 0.82 | 0.99 | 0.63 | 0.65 | 0.58 | 0.88 | 0.36 | 0.76 | 0.46 | 0.78 | 0.64 | 0.52 | 0.17 | 0.62 |
55 | 0.28 | 0.37 | 0.52 | 0.55 | 0.69 | 0.6 | 0.65 | 0.63 | 0.28 | 0.63 | 0.7 | 0.72 | 0.62 | 0.15 | 0.88 | 0.67 |
56 | 0.64 | 0.42 | 1.00 | 1.00 | 0.91 | 0.69 | 0.71 | 0.11 | 0.89 | 0.77 | 0.51 | 0.62 | 0.56 | 0.42 | 0.21 | 0.63 |
57 | 0.49 | 0.63 | 0.91 | 0.82 | 0.84 | 0.54 | 0.8 | 0.01 | 0.53 | 0.79 | 0.62 | 0.56 | 0.52 | 0.48 | 0.19 | 0.49 |
58 | 0.49 | 0.97 | 0.56 | 0.7 | 0.6 | 0.66 | 0.58 | 0.26 | 0.82 | 0.8 | 0.42 | 0.61 | 0.77 | 0.46 | 0.59 | 0.56 |
59 | 0.71 | 0.09 | 0.62 | 0.5 | 0.79 | 0.52 | 0.67 | 0.59 | 0.21 | 0.66 | 0.44 | 0.51 | 0.73 | 0.29 | 0.6 | 0.4 |
60 | 0.27 | 0.06 | 0.97 | 0.68 | 0.98 | 0.59 | 0.58 | 0.25 | 0.2 | 0.69 | 0.4 | 0.75 | 0.68 | 0.54 | 0.72 | 0.49 |
No. | In1 | In2 | In3 | In4 | In5 | In6 | In7 | In8 | In9 | In10 | In11 | In12 | In13 | In14 | In15 | In16 |
1 | 0.54 | 0.82 | 0.5 | 0.62 | 0.75 | 0.45 | 0.62 | 0.64 | 0.71 | 0.6 | 0.5 | 0.57 | 0.52 | 0.35 | 0.23 | 0.6 |
2 | 0.5 | 0.04 | 0.63 | 0.63 | 0.95 | 0.46 | 0.6 | 0.76 | 0.4 | 0.77 | 0.5 | 0.6 | 0.8 | 0.53 | 0.38 | 0.47 |
3 | 0.27 | 0.66 | 0.72 | 0.97 | 0.93 | 0.48 | 0.78 | 0.12 | 0.37 | 0.78 | 0.68 | 0.63 | 0.8 | 0.35 | 0.12 | 0.33 |
4 | 0.43 | 0.34 | 0.71 | 0.75 | 0.92 | 0.56 | 0.72 | 0.44 | 0.53 | 0.68 | 0.64 | 0.68 | 0.72 | 0.37 | 0.32 | 0.3 |
5 | 0.72 | 0.13 | 0.54 | 0.73 | 0.68 | 0.5 | 0.52 | 0.65 | 0.71 | 0.79 | 0.62 | 0.61 | 0.54 | 0.55 | 0.19 | 0.35 |
6 | 0.71 | 0.45 | 0.81 | 0.52 | 0.9 | 0.52 | 0.55 | 0.02 | 0.31 | 0.72 | 0.7 | 0.65 | 0.7 | 0.34 | 0.1 | 0.34 |
7 | 0.5 | 0.43 | 0.89 | 0.94 | 0.85 | 0.41 | 0.58 | 0.5 | 0.58 | 0.61 | 0.63 | 0.53 | 0.76 | 0.52 | 0.76 | 0.34 |
8 | 0.34 | 0.77 | 0.74 | 0.55 | 0.74 | 0.42 | 0.7 | 0.06 | 0.8 | 0.76 | 0.4 | 0.63 | 0.79 | 0.44 | 0.24 | 0.49 |
9 | 0.52 | 0.29 | 0.86 | 0.57 | 0.73 | 0.62 | 0.59 | 0.31 | 0.71 | 0.71 | 0.65 | 0.65 | 0.77 | 0.46 | 0.74 | 0.69 |
10 | 0.39 | 0.58 | 0.65 | 0.76 | 0.67 | 0.66 | 0.62 | 0.4 | 0.21 | 0.61 | 0.42 | 0.6 | 0.52 | 0.56 | 0.94 | 0.36 |
11 | 0.4 | 0.53 | 0.97 | 0.81 | 0.96 | 0.47 | 0.76 | 0.17 | 0.69 | 0.77 | 0.42 | 0.74 | 0.67 | 0.24 | 0.24 | 0.51 |
12 | 0.58 | 0.07 | 0.75 | 0.54 | 0.65 | 0.6 | 0.53 | 0.1 | 0.86 | 0.72 | 0.63 | 0.74 | 0.7 | 0.3 | 0.06 | 0.55 |
13 | 0.4 | 0.12 | 0.62 | 0.87 | 0.62 | 0.7 | 0.73 | 0.04 | 0.62 | 0.79 | 0.6 | 0.8 | 0.79 | 0.21 | 0.59 | 0.64 |
14 | 0.34 | 0.81 | 0.87 | 0.86 | 0.63 | 0.67 | 0.52 | 0.94 | 0.2 | 0.73 | 0.49 | 0.52 | 0.77 | 0.5 | 0.22 | 0.32 |
15 | 0.8 | 0.73 | 0.89 | 0.5 | 0.8 | 0.59 | 0.58 | 0.94 | 0.26 | 0.74 | 0.65 | 0.62 | 0.57 | 0.1 | 0.44 | 0.52 |
16 | 0.62 | 0.27 | 0.57 | 0.89 | 1.00 | 0.44 | 0.7 | 0.67 | 0.2 | 0.62 | 0.44 | 0.56 | 0.59 | 0.41 | 0.86 | 0.65 |
17 | 0.26 | 0.01 | 0.86 | 0.71 | 0.91 | 0.51 | 0.54 | 0.61 | 0.37 | 0.8 | 0.42 | 0.64 | 0.65 | 0.29 | 0.37 | 0.66 |
18 | 0.33 | 0.63 | 0.96 | 0.93 | 0.61 | 0.65 | 0.73 | 0.23 | 0.44 | 0.71 | 0.7 | 0.64 | 0.54 | 0.52 | 0.17 | 0.63 |
19 | 0.5 | 0.54 | 0.91 | 0.86 | 0.86 | 0.53 | 0.74 | 0.61 | 0.65 | 0.71 | 0.57 | 0.61 | 0.74 | 0.55 | 0.94 | 0.48 |
21 | 0.33 | 0.89 | 0.68 | 0.62 | 0.81 | 0.59 | 0.51 | 0.38 | 0.51 | 0.75 | 0.51 | 0.77 | 0.79 | 0.41 | 0.86 | 0.35 |
22 | 0.61 | 0.4 | 0.56 | 0.54 | 0.83 | 0.7 | 0.53 | 0.37 | 0.63 | 0.7 | 0.56 | 0.64 | 0.58 | 0.33 | 0.97 | 0.67 |
23 | 0.68 | 0.84 | 0.98 | 0.9 | 0.88 | 0.44 | 0.69 | 0.03 | 0.6 | 0.74 | 0.43 | 0.59 | 0.72 | 0.14 | 0.25 | 0.61 |
24 | 0.41 | 0.81 | 0.81 | 0.95 | 0.73 | 0.46 | 0.77 | 0.66 | 0.5 | 0.68 | 0.47 | 0.63 | 0.69 | 0.23 | 0.31 | 0.3 |
25 | 0.27 | 0.44 | 0.63 | 0.55 | 0.94 | 0.69 | 0.72 | 0.18 | 0.28 | 0.74 | 0.61 | 0.71 | 0.58 | 0.21 | 0.00 | 0.59 |
26 | 0.28 | 0.37 | 0.53 | 0.55 | 0.85 | 0.47 | 0.68 | 0.33 | 0.75 | 0.78 | 0.46 | 0.65 | 0.67 | 0.18 | 0.35 | 0.7 |
27 | 0.64 | 0.79 | 0.63 | 0.7 | 0.89 | 0.45 | 0.57 | 0.15 | 0.69 | 0.77 | 0.66 | 0.71 | 0.65 | 0.25 | 0.55 | 0.52 |
28 | 0.31 | 0.89 | 0.99 | 0.62 | 0.67 | 0.6 | 0.79 | 0.25 | 0.38 | 0.72 | 0.51 | 0.8 | 0.54 | 0.39 | 0.11 | 0.55 |
29 | 0.6 | 0.02 | 0.76 | 0.73 | 0.64 | 0.7 | 0.5 | 0.67 | 0.53 | 0.64 | 0.42 | 0.79 | 0.62 | 0.45 | 0.99 | 0.36 |
30 | 0.42 | 0.23 | 0.76 | 0.9 | 0.81 | 0.66 | 0.79 | 0.96 | 0.69 | 0.78 | 0.56 | 0.51 | 0.76 | 0.2 | 0.51 | 0.36 |
31 | 0.8 | 0.48 | 0.8 | 0.51 | 0.83 | 0.43 | 0.66 | 0.84 | 0.3 | 0.78 | 0.48 | 0.58 | 0.69 | 0.48 | 0.12 | 0.31 |
32 | 0.58 | 0.05 | 0.66 | 0.6 | 0.73 | 0.61 | 0.73 | 0.23 | 0.87 | 0.74 | 0.49 | 0.67 | 0.77 | 0.32 | 0.03 | 0.68 |
33 | 0.57 | 0.21 | 0.86 | 0.71 | 0.64 | 0.54 | 0.78 | 0.45 | 0.55 | 0.74 | 0.68 | 0.77 | 0.56 | 0.31 | 0.99 | 0.41 |
34 | 0.76 | 0.63 | 0.65 | 0.93 | 0.66 | 0.44 | 0.68 | 0.99 | 0.75 | 0.72 | 0.52 | 0.8 | 0.5 | 0.2 | 0.5 | 0.38 |
35 | 0.28 | 0.04 | 0.71 | 0.67 | 0.72 | 0.43 | 0.57 | 0.44 | 0.72 | 0.71 | 0.45 | 0.5 | 0.75 | 0.41 | 0.29 | 0.47 |
36 | 0.45 | 0.75 | 0.87 | 0.7 | 0.62 | 0.41 | 0.57 | 0.92 | 0.63 | 0.73 | 0.62 | 0.78 | 0.67 | 0.34 | 0.36 | 0.35 |
37 | 0.73 | 0.1 | 0.75 | 0.98 | 0.73 | 0.55 | 0.56 | 0.34 | 0.75 | 0.69 | 0.62 | 0.52 | 0.73 | 0.23 | 0.61 | 0.57 |
38 | 0.75 | 0.2 | 0.75 | 0.72 | 0.95 | 0.51 | 0.67 | 0.72 | 0.46 | 0.72 | 0.66 | 0.66 | 0.75 | 0.49 | 0.91 | 0.58 |
39 | 0.8 | 0.98 | 0.52 | 0.86 | 0.86 | 0.68 | 0.5 | 0.31 | 0.69 | 0.65 | 0.63 | 0.64 | 0.76 | 0.17 | 0.27 | 0.43 |
41 | 0.33 | 0.44 | 0.84 | 0.84 | 0.68 | 0.7 | 0.58 | 0.98 | 0.37 | 0.6 | 0.5 | 0.78 | 0.54 | 0.52 | 0.27 | 0.7 |
42 | 0.66 | 0.97 | 0.59 | 0.7 | 0.78 | 0.59 | 0.77 | 0.72 | 0.44 | 0.68 | 0.67 | 0.71 | 0.66 | 0.16 | 0.34 | 0.54 |
43 | 0.32 | 0.72 | 0.75 | 0.58 | 0.73 | 0.58 | 0.56 | 0.26 | 0.21 | 0.62 | 0.51 | 0.66 | 0.78 | 0.28 | 0.62 | 0.62 |
44 | 0.52 | 0.17 | 0.56 | 0.99 | 0.76 | 0.65 | 0.77 | 0.59 | 0.46 | 0.73 | 0.67 | 0.67 | 0.5 | 0.41 | 0.87 | 0.56 |
45 | 0.59 | 0.53 | 0.8 | 0.78 | 0.93 | 0.46 | 0.71 | 0.07 | 0.78 | 0.66 | 0.52 | 0.59 | 0.68 | 0.16 | 0.71 | 0.36 |
46 | 0.46 | 0.01 | 0.77 | 0.77 | 0.99 | 0.5 | 0.71 | 0.76 | 0.9 | 0.78 | 0.59 | 0.6 | 0.79 | 0.48 | 0.46 | 0.54 |
47 | 0.79 | 0.07 | 0.82 | 0.68 | 0.81 | 0.59 | 0.74 | 0.3 | 0.64 | 0.75 | 0.65 | 0.62 | 0.72 | 0.12 | 0.41 | 0.6 |
48 | 0.41 | 0.18 | 0.64 | 0.59 | 0.79 | 0.46 | 0.73 | 0.89 | 0.76 | 0.64 | 0.62 | 0.54 | 0.58 | 0.53 | 0.22 | 0.41 |
49 | 0.45 | 0.09 | 0.53 | 0.86 | 0.65 | 0.64 | 0.74 | 0.27 | 0.28 | 0.77 | 0.62 | 0.58 | 0.71 | 0.46 | 0.84 | 0.4 |
50 | 0.4 | 0.49 | 0.91 | 0.62 | 0.88 | 0.58 | 0.75 | 0.39 | 0.35 | 0.71 | 0.65 | 0.78 | 0.64 | 0.13 | 0.39 | 0.44 |
51 | 0.66 | 0.47 | 0.71 | 0.61 | 0.67 | 0.57 | 0.66 | 0.02 | 0.31 | 0.6 | 0.61 | 0.75 | 0.76 | 0.51 | 0.69 | 0.35 |
52 | 0.62 | 0.42 | 0.81 | 0.54 | 0.93 | 0.54 | 0.52 | 0.11 | 0.22 | 0.69 | 0.68 | 0.79 | 0.62 | 0.35 | 0.55 | 0.69 |
53 | 0.7 | 0.93 | 0.66 | 0.52 | 0.9 | 0.45 | 0.57 | 0.65 | 0.31 | 0.64 | 0.56 | 0.58 | 0.8 | 0.23 | 0.25 | 0.43 |
54 | 0.25 | 0.91 | 0.82 | 0.99 | 0.63 | 0.65 | 0.58 | 0.88 | 0.36 | 0.76 | 0.46 | 0.78 | 0.64 | 0.52 | 0.17 | 0.62 |
55 | 0.28 | 0.37 | 0.52 | 0.55 | 0.69 | 0.6 | 0.65 | 0.63 | 0.28 | 0.63 | 0.7 | 0.72 | 0.62 | 0.15 | 0.88 | 0.67 |
56 | 0.64 | 0.42 | 1.00 | 1.00 | 0.91 | 0.69 | 0.71 | 0.11 | 0.89 | 0.77 | 0.51 | 0.62 | 0.56 | 0.42 | 0.21 | 0.63 |
57 | 0.49 | 0.63 | 0.91 | 0.82 | 0.84 | 0.54 | 0.8 | 0.01 | 0.53 | 0.79 | 0.62 | 0.56 | 0.52 | 0.48 | 0.19 | 0.49 |
58 | 0.49 | 0.97 | 0.56 | 0.7 | 0.6 | 0.66 | 0.58 | 0.26 | 0.82 | 0.8 | 0.42 | 0.61 | 0.77 | 0.46 | 0.59 | 0.56 |
59 | 0.71 | 0.09 | 0.62 | 0.5 | 0.79 | 0.52 | 0.67 | 0.59 | 0.21 | 0.66 | 0.44 | 0.51 | 0.73 | 0.29 | 0.6 | 0.4 |
60 | 0.27 | 0.06 | 0.97 | 0.68 | 0.98 | 0.59 | 0.58 | 0.25 | 0.2 | 0.69 | 0.4 | 0.75 | 0.68 | 0.54 | 0.72 | 0.49 |
[1] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[2] |
Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067 |
[3] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[4] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[5] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[6] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
[7] |
Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020181 |
[8] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[9] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[10] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[11] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[12] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
[13] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[14] |
Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020165 |
[15] |
Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020173 |
[16] |
Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131 |
[17] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020446 |
[18] |
Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020167 |
[19] |
Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020175 |
[20] |
Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]