• Previous Article
    Predicting 72-hour reattendance in emergency departments using discriminant analysis via mixed integer programming with electronic medical records
  • JIMO Home
  • This Issue
  • Next Article
    A difference of convex optimization algorithm for piecewise linear regression
April  2019, 15(2): 933-946. doi: 10.3934/jimo.2018078

Global error bounds for the tensor complementarity problem with a P-tensor

School of Mathematics, Tianjin University, Tianjin 300350, China

* Corresponding author: Zheng-Hai Huang

Received  September 2017 Revised  January 2018 Published  June 2018

Fund Project: The third author is supported by the National Natural Science Foundation of China (Grant No. 11431002).

As a natural extension of the linear complementarity problem, the tensor complementarity problem has been studied recently; and many theoretical results have been obtained. In this paper, we investigate the global error bound for the tensor complementarity problem with a P-tensor. We give two global error bounds for this class of complementarity problems with the help of two positively homogeneous operators defined by a P-tensor. When the order of the involved tensor reduces to 2, the results obtained in this paper coincide exactly with the one for the linear complementarity problem.

Citation: Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial & Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078
References:
[1]

X. L. BaiZ. H. Huang and Y. Wang, Global uniqueness and solvability for tensor complementarity problems, Journal of Optimization Theory and Applications, 170 (2016), 72-84.  doi: 10.1007/s10957-016-0903-4.  Google Scholar

[2]

A. Berman and R. J. Plemmons, Nonnegative Matrix in the Mathematical Sciences, Society for Industrial and Applied Mathematics, Philadelphia, 1994. doi: 10.1137/1.9781611971262.  Google Scholar

[3]

M. L. CheL. Qi and Y. M. Wei, Positive definite tensors to nonlinear complementarity problems, Journal of Optimization Theory and Applications, 168 (2016), 475-487.  doi: 10.1007/s10957-015-0773-1.  Google Scholar

[4]

T. T. ChenW. LiX. P. Wu and S. Vong, Error bounds for linear complementarity problems of MB-matrices, Numerical Algorithms, 70 (2015), 341-356.  doi: 10.1007/s11075-014-9950-9.  Google Scholar

[5]

X. Chen and S. Xiang, Computation of error bounds for P-matrix linear complementarity problems, Mathematical Programming, 106 (2006), 513-525.  doi: 10.1007/s10107-005-0645-9.  Google Scholar

[6]

X. Chen and S. Xiang, Perturbation bounds of P-matrix linear complementarity problems, SIAM Journal on Optimization, 18 (2007), 1250-1265.  doi: 10.1137/060653019.  Google Scholar

[7]

R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992.  Google Scholar

[8]

P. F. Dai, Error bounds for linear complementarity problems of DB-matrices, Linear Algebra and its Applications, 434 (2011), 830-840.  doi: 10.1016/j.laa.2010.09.049.  Google Scholar

[9]

P. F. DaiY. T. Li and C. J. Lu, Error bounds for linear complementarity problems for SB-matrices, Numerical Algorithms, 61 (2012), 121-139.  doi: 10.1007/s11075-012-9533-6.  Google Scholar

[10]

P. F. DaiY. T. Li and C. J. Lu, New error bounds for linear complementarity problem with an SB-matrices, Numerical Algorithms, 64 (2013), 741-757.  doi: 10.1007/s11075-012-9691-6.  Google Scholar

[11]

L. Gao and C. Li, An improved error bound for linear complementarity problems for B-matrices, Journal of Inequalities and Applications, (2017), Paper No. 144, 10 pp. doi: 10.1186/s13660-017-1414-z.  Google Scholar

[12]

M. García-Esnaola and J. M. Peña, Error bounds for linear complementarity problems for $B$-matrices, Applied Mathematics Letters, 22 (2009), 1071-1075.  doi: 10.1016/j.aml.2008.09.001.  Google Scholar

[13]

M. S. Gowda, Z. Y. Luo, L. Qi and N. H. Xiu, Z tensors and complementarity problems, arXiv: 1510.07933v2 (2016). Google Scholar

[14]

Q. Guo, M. M. Zheng and Z. H. Huang, Properties of S-tensor Linear and Multilinear Algebra, (2018). doi: 10.1080/03081087.2018.1430737.  Google Scholar

[15]

Z. H. Huang and L. Qi, Formulating an n-person noncooperative game as a tensor complementarity problem, Computational Optimization and Applications, 66 (2017), 557-576.  doi: 10.1007/s10589-016-9872-7.  Google Scholar

[16]

Z. H. Huang, Y. Y. Suo and J. Wang, On $Q$-tensors, to appear in Pacific Journal of Optimization, arXiv: 1509.03088 (2015). Google Scholar

[17]

C. LiM. Gan and S. Yang, A new error bound for linear complementarity problems for B-matrices, Electronic Journal of Linear Algebra, 31 (2016), 476-484.  doi: 10.13001/1081-3810.3250.  Google Scholar

[18]

W. Li and H. Zheng, Some new error bounds for linear complementarity problems of H-matrices, Numerical Algorithms, 67 (2014), 257-269.  doi: 10.1007/s11075-013-9786-8.  Google Scholar

[19]

Z. Q. LuoO. L. MangasarianJ. Ren and M. V. Solodov, New error bounds for the linear complementarity problem, Mathematics of Operations Research, 19 (1994), 880-892.  doi: 10.1287/moor.19.4.880.  Google Scholar

[20]

Z. Y. LuoL. Qi and N. H. Xiu, The sparsest solutions to $Z$-tensor complementarity problems, Optimization Letters, 11 (2017), 471-482.  doi: 10.1007/s11590-016-1013-9.  Google Scholar

[21]

R. Mathias and J.-S. Pang, Error bounds for the linear complementarity problem with a P-matrix, Linear Algebra and its Applications, 132 (1990), 123-136.  doi: 10.1016/0024-3795(90)90058-K.  Google Scholar

[22]

K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin, 1988.  Google Scholar

[23]

L. Qi and Z. Y. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial & Applied Mathematics, U. S. A, 2017. doi: 10.1137/1.9781611974751.ch1.  Google Scholar

[24]

Y. S. Song and L. Qi, Properties of some classes of structured tensors, Journal of Optimization Theory and Applications, 165 (2015), 854-873.  doi: 10.1007/s10957-014-0616-5.  Google Scholar

[25]

Y. S. Song and L. Qi, Tensor complementarity problem and semi-positive tensors, Journal of Optimization Theory and Applications, 169 (2016), 1069-1078.  doi: 10.1007/s10957-015-0800-2.  Google Scholar

[26]

Y. S. Song and L. Qi, Strictly semi-positive tensors and the boundedness of tensor complementarity problems, Optimization Letters, 11 (2017), 1407-1426.  doi: 10.1007/s11590-016-1104-7.  Google Scholar

[27]

Y. S. Song and L. Qi, Properties of tensor complementarity problem and some classes of structured tensors, Annals of Applied Mathematics, 33 (2017), 308-323.   Google Scholar

[28]

Y. S. Song and G. H. Yu, Properties of solution set of tensor complementarity problem, Journal of Optimization Theory and Applications, 170 (2016), 85-96.  doi: 10.1007/s10957-016-0907-0.  Google Scholar

[29]

Y. WangZ. H. Huang and X. L. Bai, Exceptionally regular tensors and tensor complementarity problems, Optimization Methods and Software, 31 (2016), 815-828.  doi: 10.1080/10556788.2016.1180386.  Google Scholar

[30]

W. Yu, C. Ling, H. J. He and L. Qi, On the properties of tensor complementarity problems, arXiv: 1608.01735v1 (2016). Google Scholar

[31]

P. Z. Yuan and L. H. You, Some remarks on P, P0, B and B0 tensors, Linear Algebra and its Applications, 459 (2014), 511-521.  doi: 10.1016/j.laa.2014.07.043.  Google Scholar

show all references

References:
[1]

X. L. BaiZ. H. Huang and Y. Wang, Global uniqueness and solvability for tensor complementarity problems, Journal of Optimization Theory and Applications, 170 (2016), 72-84.  doi: 10.1007/s10957-016-0903-4.  Google Scholar

[2]

A. Berman and R. J. Plemmons, Nonnegative Matrix in the Mathematical Sciences, Society for Industrial and Applied Mathematics, Philadelphia, 1994. doi: 10.1137/1.9781611971262.  Google Scholar

[3]

M. L. CheL. Qi and Y. M. Wei, Positive definite tensors to nonlinear complementarity problems, Journal of Optimization Theory and Applications, 168 (2016), 475-487.  doi: 10.1007/s10957-015-0773-1.  Google Scholar

[4]

T. T. ChenW. LiX. P. Wu and S. Vong, Error bounds for linear complementarity problems of MB-matrices, Numerical Algorithms, 70 (2015), 341-356.  doi: 10.1007/s11075-014-9950-9.  Google Scholar

[5]

X. Chen and S. Xiang, Computation of error bounds for P-matrix linear complementarity problems, Mathematical Programming, 106 (2006), 513-525.  doi: 10.1007/s10107-005-0645-9.  Google Scholar

[6]

X. Chen and S. Xiang, Perturbation bounds of P-matrix linear complementarity problems, SIAM Journal on Optimization, 18 (2007), 1250-1265.  doi: 10.1137/060653019.  Google Scholar

[7]

R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992.  Google Scholar

[8]

P. F. Dai, Error bounds for linear complementarity problems of DB-matrices, Linear Algebra and its Applications, 434 (2011), 830-840.  doi: 10.1016/j.laa.2010.09.049.  Google Scholar

[9]

P. F. DaiY. T. Li and C. J. Lu, Error bounds for linear complementarity problems for SB-matrices, Numerical Algorithms, 61 (2012), 121-139.  doi: 10.1007/s11075-012-9533-6.  Google Scholar

[10]

P. F. DaiY. T. Li and C. J. Lu, New error bounds for linear complementarity problem with an SB-matrices, Numerical Algorithms, 64 (2013), 741-757.  doi: 10.1007/s11075-012-9691-6.  Google Scholar

[11]

L. Gao and C. Li, An improved error bound for linear complementarity problems for B-matrices, Journal of Inequalities and Applications, (2017), Paper No. 144, 10 pp. doi: 10.1186/s13660-017-1414-z.  Google Scholar

[12]

M. García-Esnaola and J. M. Peña, Error bounds for linear complementarity problems for $B$-matrices, Applied Mathematics Letters, 22 (2009), 1071-1075.  doi: 10.1016/j.aml.2008.09.001.  Google Scholar

[13]

M. S. Gowda, Z. Y. Luo, L. Qi and N. H. Xiu, Z tensors and complementarity problems, arXiv: 1510.07933v2 (2016). Google Scholar

[14]

Q. Guo, M. M. Zheng and Z. H. Huang, Properties of S-tensor Linear and Multilinear Algebra, (2018). doi: 10.1080/03081087.2018.1430737.  Google Scholar

[15]

Z. H. Huang and L. Qi, Formulating an n-person noncooperative game as a tensor complementarity problem, Computational Optimization and Applications, 66 (2017), 557-576.  doi: 10.1007/s10589-016-9872-7.  Google Scholar

[16]

Z. H. Huang, Y. Y. Suo and J. Wang, On $Q$-tensors, to appear in Pacific Journal of Optimization, arXiv: 1509.03088 (2015). Google Scholar

[17]

C. LiM. Gan and S. Yang, A new error bound for linear complementarity problems for B-matrices, Electronic Journal of Linear Algebra, 31 (2016), 476-484.  doi: 10.13001/1081-3810.3250.  Google Scholar

[18]

W. Li and H. Zheng, Some new error bounds for linear complementarity problems of H-matrices, Numerical Algorithms, 67 (2014), 257-269.  doi: 10.1007/s11075-013-9786-8.  Google Scholar

[19]

Z. Q. LuoO. L. MangasarianJ. Ren and M. V. Solodov, New error bounds for the linear complementarity problem, Mathematics of Operations Research, 19 (1994), 880-892.  doi: 10.1287/moor.19.4.880.  Google Scholar

[20]

Z. Y. LuoL. Qi and N. H. Xiu, The sparsest solutions to $Z$-tensor complementarity problems, Optimization Letters, 11 (2017), 471-482.  doi: 10.1007/s11590-016-1013-9.  Google Scholar

[21]

R. Mathias and J.-S. Pang, Error bounds for the linear complementarity problem with a P-matrix, Linear Algebra and its Applications, 132 (1990), 123-136.  doi: 10.1016/0024-3795(90)90058-K.  Google Scholar

[22]

K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin, 1988.  Google Scholar

[23]

L. Qi and Z. Y. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial & Applied Mathematics, U. S. A, 2017. doi: 10.1137/1.9781611974751.ch1.  Google Scholar

[24]

Y. S. Song and L. Qi, Properties of some classes of structured tensors, Journal of Optimization Theory and Applications, 165 (2015), 854-873.  doi: 10.1007/s10957-014-0616-5.  Google Scholar

[25]

Y. S. Song and L. Qi, Tensor complementarity problem and semi-positive tensors, Journal of Optimization Theory and Applications, 169 (2016), 1069-1078.  doi: 10.1007/s10957-015-0800-2.  Google Scholar

[26]

Y. S. Song and L. Qi, Strictly semi-positive tensors and the boundedness of tensor complementarity problems, Optimization Letters, 11 (2017), 1407-1426.  doi: 10.1007/s11590-016-1104-7.  Google Scholar

[27]

Y. S. Song and L. Qi, Properties of tensor complementarity problem and some classes of structured tensors, Annals of Applied Mathematics, 33 (2017), 308-323.   Google Scholar

[28]

Y. S. Song and G. H. Yu, Properties of solution set of tensor complementarity problem, Journal of Optimization Theory and Applications, 170 (2016), 85-96.  doi: 10.1007/s10957-016-0907-0.  Google Scholar

[29]

Y. WangZ. H. Huang and X. L. Bai, Exceptionally regular tensors and tensor complementarity problems, Optimization Methods and Software, 31 (2016), 815-828.  doi: 10.1080/10556788.2016.1180386.  Google Scholar

[30]

W. Yu, C. Ling, H. J. He and L. Qi, On the properties of tensor complementarity problems, arXiv: 1608.01735v1 (2016). Google Scholar

[31]

P. Z. Yuan and L. H. You, Some remarks on P, P0, B and B0 tensors, Linear Algebra and its Applications, 459 (2014), 511-521.  doi: 10.1016/j.laa.2014.07.043.  Google Scholar

[1]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[2]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[3]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[4]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[5]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[6]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[7]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[8]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[9]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[10]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[12]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[13]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[14]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[17]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[18]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[19]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[20]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (263)
  • HTML views (1196)
  • Cited by (3)

Other articles
by authors

[Back to Top]