[1]
|
F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3-11.
doi: 10.1023/A:1011253113155.
|
[2]
|
Q. H. Ansari and A. Rehan, Split feasibility and fixed point problems, In: Q. H. Ansari (ed.),
Nonlinear Anal. Approx. The., Optim. Appl., Springer, (2014), 281-322.
|
[3]
|
J. P. Aubin,
Optima and Equilibria: An Introduction to Nonlinear Analysis, Springer, 1993.
doi: 10.1007/978-3-662-02959-6.
|
[4]
|
K. J. Batenburg, A network flow algorithm for reconstructing binary images from discrete X-rays, J. Math. Imaging Vis., 27 (2007), 175-191.
doi: 10.1007/s10851-006-9798-2.
|
[5]
|
D. Butnariu and A. N. Iusem,
Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
doi: 10.1007/978-94-011-4066-9.
|
[6]
|
H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), 367-426.
doi: 10.1137/S0036144593251710.
|
[7]
|
C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453.
doi: 10.1088/0266-5611/18/2/310.
|
[8]
|
C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20 (2004), 103-120.
doi: 10.1088/0266-5611/20/1/006.
|
[9]
|
L. C. Ceng, Q. H. Ansari and J. C. Yao, An extragradient method for solving split feasibility and fixed point problems, Comput. Math. Appl., 64 (2012), 633-642.
doi: 10.1016/j.camwa.2011.12.074.
|
[10]
|
Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projection in a product space, Numer. Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692.
|
[11]
|
Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51 (2003), 2353-2365.
doi: 10.1088/0031-9155/51/10/001.
|
[12]
|
Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017.
|
[13]
|
S. Chen, D. Donoho and M. Saunders, Atomic decomposition by basis pursuit, SIAM J. Comput., 20 (1998), 33-61.
doi: 10.1137/S1064827596304010.
|
[14]
|
Y. Dang and Y. Gao, The strong convergence of a KM-CQ-like algorithm for a split feasibility problem, Inverse Problems, 27 (2011), 015007, 9 pp.
doi: 10.1088/0266-5611/27/1/015007.
|
[15]
|
Y. Dang, J. Sun and H. K. Xu, Inertial accelerated algorithms for solving a split feasibility problem, J. Indus. Manage. Optim., 13 (2017), 1383-1394.
doi: 10.3934/jimo.2016078.
|
[16]
|
A. Gibali, L.-W. Liu and Y.-C. Tang, Note on the modified relaxation CQ algorithm for the split feasibility problem, Optim. Lett., (2017), 1-14.
doi: 10.1007/s11590-017-1148-3.
|
[17]
|
A. Gibali and S. Petra, DC-Programming versus l0-Superiorization for Discrete Tomography, To appear in Analele Ştiinţifice ale Universitatii Ovidius Constanţa, Seria Mathematica, 2017.
|
[18]
|
K. Goebel and S. Reich,
Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.
|
[19]
|
P. C. Hansen and M. Saxild-Hansen, AIR tools - a MATLAB package of algebraic iterative reconstruction methods, J. Comput. Appl. Math., 236 (2012), 2167-2178.
doi: 10.1016/j.cam.2011.09.039.
|
[20]
|
M. Li and Y. Yao, Strong convergence of an iterative algorithm for λ-strictly pseudocontractive mappings in Hilbert spaces, Analele Ştiinţifice ale Universitatii Ovidius Constanţa, Seria Mathematica, 18 (2010), 219-228.
|
[21]
|
G. López, V. Martín-Márquez, F. Wang and H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Problems, 28 (2012), 085004, 18 pp.
doi: 10.1088/0266-5611/28/8/085004.
|
[22]
|
Y. Lou and M. Yan, Fast l1 - l2 Minimization via a proximal operator, arXiv: 1609.09530.
|
[23]
|
P. E. Maingé, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 325 (2007), 469-479.
doi: 10.1016/j.jmaa.2005.12.066.
|
[24]
|
P. E. Maingé, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223-236.
doi: 10.1016/j.cam.2007.07.021.
|
[25]
|
P. E. Maingé, Strong convergence of projected subgradientmethods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912.
doi: 10.1007/s11228-008-0102-z.
|
[26]
|
A. Moudafi and A. Gibali, l1-l2 Regularization of split feasibility problems, Numer. Algorithms, (2017), 1-19.
doi: 10.1007/s11075-017-0398-6.
|
[27]
|
T. L. N. Nguyen and Y. Shin, Deterministic sensing matrices in compressive sensing: A
survey, Sci. World J., 2013 (2013), Article ID 192795, 6 pages.
doi: 10.1155/2013/192795.
|
[28]
|
Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73 (1967), 591-597.
doi: 10.1090/S0002-9904-1967-11761-0.
|
[29]
|
Y. Shehu and O. S. Iyiola, Accelerated hybrid viscosity and steepest-descent method for proximal split feasibility problems, Optimization, 67 (2018), 475-492.
doi: 10.1080/02331934.2017.1405955.
|
[30]
|
Y. Shehu and O. S. Iyiola, Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method, J. Fixed Point Theory Appl., 19 (2017), 2483-2510.
doi: 10.1007/s11784-017-0435-z.
|
[31]
|
S. Suantai, N. Pholasa and P. Cholamjiak, The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Ind. Manag. Optim., (2017).
doi: 10.3934/jimo.2018023.
|
[32]
|
R. Tibshirani, Regression shrinkage and selection Via the lasso, J. Royal Stat. Soc., 58 (1996), 267-288.
|
[33]
|
F. Wang and H.-K. Xu, Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., 74 (2011), 4105-4111.
doi: 10.1016/j.na.2011.03.044.
|
[34]
|
F. Wang, Polyak's gradient method for split feasibility problem constrained by level sets, Numer. Algorithms, 77 (2018), 925-938.
doi: 10.1007/s11075-017-0347-4.
|
[35]
|
H.-K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Problems, 26 (2010), 105018, 17 pp.
doi: 10.1088/0266-5611/26/10/105018.
|
[36]
|
H.-K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240-256.
doi: 10.1112/S0024610702003332.
|
[37]
|
Z. Xu, X. Chang, F. Xu and H. Zhang, l1-2 Regularization: A thresholding representation theory and a fast solver, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012), 1013-1027.
|
[38]
|
Q. Yang, The relaxed CQ algorithm for solving the split feasibility problem, Inverse Problems, 20 (2004), 1261-1266.
doi: 10.1088/0266-5611/20/4/014.
|
[39]
|
H. Zhou and P. Wang, Adaptively relaxed algorithms for solving the split feasibility problem with a new step size, J. Inequal. Appl., 2014 (20214), 22pp.
doi: 10.1186/1029-242X-2014-448.
|