
- Previous Article
- JIMO Home
- This Issue
-
Next Article
Computational optimal control of 1D colloid transport by solute gradients in dead-end micro-channels
Robust solution for a minimax regret hub location problem in a fuzzy-stochastic environment
1. | Department of Industrial Engineering & Management Systems, Amirkabir University of Technology, Tehran, Iran |
2. | Department of Industrial Engineering, Shahed University, Tehran, Iran |
In the present paper, a robust approach is used to locate hub facilities considering network risks. An additional objective function, minimax regret, is added to the classical objective function in the hub location problem. In the proposed model, risk factors such as availability, security, delay time, environmental guidelines and regional air pollution are considered using triangular fuzzy-stochastic numbers. Then an equivalent crisp single objective model is proposed and solved by the Benders decomposition method. Finally, the results of both Benders decomposition and commercial optimization software are compared for different instances. Numerical instances were developed based on the well-known Civil Aeronautics Board (CAB) data set, considering different levels of uncertainty in parameters. The results show that the proposed model is capable of selecting nodes as sustainable hubs. Also, the results confirm that using Benders decomposition is more efficient than using classical solution methods for large-scale problems.
References:
[1] |
S. Alumur and B. Y. Kara,
A new model for the hazardous waste location-routing problem, Comp. Oper. Res., 34 (2007), 1406-1423.
doi: 10.1016/j.cor.2005.06.012. |
[2] |
S. A. Alumur, S. Nickel and F. Saldanha-da-Gama,
Hub location under uncertainty, Trans. Res. Part B: Method., 46 (2012), 529-543.
doi: 10.1016/j.trb.2011.11.006. |
[3] |
F. Atoei, E. Teimory and A. Amiri,
Designing reliable supply chain network with disruption risk, Int. J. Indust. Eng. Comp., 4 (2013), 111-126.
|
[4] |
M. Bashiri, M. Mirzaei and M. Randall,
Modeling fuzzy capacitated p-hub center problem and a genetic algorithm solution, Appl. Math. Model., 37 (2013), 3513-3525.
doi: 10.1016/j.apm.2012.07.018. |
[5] |
J. F. Benders,
Partitioning procedures for solving mixed-variables programming problems, Numer. Math., 4 (1962), 238-252.
doi: 10.1007/BF01386316. |
[6] |
R. Caballero, M. González, F. M. Guerrero, J. Molina and C. Paralera,
Solving a multiobjective location routing problem with a metaheuristic based on tabu search. Application to a real case in Andalusia, European Journal of Operational Research, 177 (2007), 1751-1763.
doi: 10.1016/j.ejor.2005.10.017. |
[7] |
R. S. de Camargo, G. de Miranda, Jr. and R. P. M. Ferreira,
A hybrid outer-approximation/benders decomposition algorithm for the single allocation hub location problem under congestion, Oper. Res. Lett., 39 (2011), 329-337.
doi: 10.1016/j.orl.2011.06.015. |
[8] |
R. S. de Camargo, G. de Miranda, Jr., R. P. M. Ferreira and H. P. Luna,
Multiple allocation hub-and-spoke network design under hub congestion, Comp. Oper. Res., 36 (2009), 3097-3106.
doi: 10.1016/j.cor.2008.10.004. |
[9] |
R. S. de Camargo, G. de Miranda, Jr. and H. P. Luna,
Benders decomposition for the uncapacitated multiple allocation hub location problem, Comp. Oper. Res., 35 (2008), 1047-1064.
doi: 10.1016/j.cor.2006.07.002. |
[10] |
R. S. de Camargo, G. de Miranda, Jr. and H. L. P. Luna,
Benders decomposition for hub location problems with economies of scale, Transportation Science, 43 (2008), 86-97.
doi: 10.1287/trsc.1080.0233. |
[11] |
J. F. Campbell,
Integer programming formulations of discrete hub location problems, Eur. J. Oper. R., 72 (1994), 387-405.
doi: 10.1016/0377-2217(94)90318-2. |
[12] |
Z. Chen, H. Li, H. Ren, Q. Xu and J. Hong,
A total environmental risk assessment model for international hub airports, Int. J. Proj. Man., 29 (2011), 856-866.
doi: 10.1016/j.ijproman.2011.03.004. |
[13] |
G. Chen and T. T. Pham, Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems, CRC Press, 2000.
doi: 10.1201/9781420039818.![]() ![]() |
[14] |
I. Contreras, J.-F. Cordeau and G. Laporte,
Benders decomposition for large-scale uncapacitated hub location, Operations Research, 59 (2011), 1477-1490.
doi: 10.1287/opre.1110.0965. |
[15] |
I. Contreras, J.-F. Cordeau and G. Laporte,
Stochastic uncapacitated hub location, Eur. J. Oper. Res., 212 (2011), 518-528.
doi: 10.1016/j.ejor.2011.02.018. |
[16] |
I. Contreras, J.-F. Cordeau and G. Laporte,
Exact solution of large-scale hub location problems with multiple capacity levels, Transportation Science, 46 (2012), 439-459.
doi: 10.1287/trsc.1110.0398. |
[17] |
S. Davari, M. H. Fazel Zarandi and A. Hemmati,
Maximal covering location problem (MCLP) with fuzzy travel times, Expert Systems with Applications, 38 (2011), 14535-14541.
doi: 10.1016/j.eswa.2011.05.031. |
[18] |
K. Deb,
Multi-objective Optimization Using Evolutionary Algorithms, Wiley-Interscience Series in Systems and Optimization, John Wiley & Sons, Ltd., Chichester, 2001. |
[19] |
M. Eghbali, M. Abedzadeh and M. Setak,
Multi-objective reliable hub covering location considering customer convenience using NSGA-Ⅱ, Int. J. Syst. Assur. Eng. Manag., 5 (2014), 450-460.
doi: 10.1007/s13198-013-0189-y. |
[20] |
E. Erkut and O. Alp,
Designing a road network for hazardous materials shipments, Comp. Oper. Res., 34 (2007), 1389-1405.
|
[21] |
A. Eydi and A. Mirakhorli, An extended model for the uncapacitated single allocation hub covering problem in a fuzzy environment, in Proceedings of the International Multiconference of Engineers and Computer Scientists, International Association of Engineers, Hong Kong, Vol Ⅱ, (2012). |
[22] |
P. Garcia-Herreros, J. M. Wassick and I. E. Grossmann,
Design of resilient supply chains with risk of facility disruptions, Indust. Eng. Chem. Res., 53 (2014), 17240-17251.
doi: 10.1021/ie5004174. |
[23] |
S. Gelareh and S. Nickel, A benders decomposition for hub location problems arising in public
transport, in Operations Research Proceedings 2007 Part Ⅵ, Springer Berlin Heidelberg,
2008,129-134. |
[24] |
B. Gendron,
Decomposition methods for network design, Procedia-Social and Behavioral Sciences, 20 (2011), 31-37.
doi: 10.1016/j.sbspro.2011.08.006. |
[25] |
A. M. Geoffrion,
Generalized Benders decomposition, J. Optimization Theory Appl., 10 (1972), 237-260.
doi: 10.1007/BF00934810. |
[26] |
M. da Graça Costa, M. E. Captivo and J. Clímaco,
Capacitated single allocation hub location problem-A bi-criteria approach, Comp. Oper. Res., 35 (2008), 3671-3695.
|
[27] |
I. Heckmann, T. Comes and S. Nickel,
A critical review on supply chain risk-Definition, measure and modeling, Omega, 52 (2015), 119-132.
doi: 10.1016/j.omega.2014.10.004. |
[28] |
C. L. Hwang and K. Yoon,
Multiple Attributes Decision Making. Methods and Applications, Springer-Verlag, Berlin-New York, 1981. |
[29] |
A. Jabbarzadeh, S. G. Jalali Naini, H. Davoudpour and N. Azad, Designing a supply chain network under the risk of disruptions,
Math. Probl. Eng., (2012), Art. ID 234324, 23 pp.
doi: 10.1155/2012/234324. |
[30] |
B. Y. Kara,
Modeling and Analysis of Issues in Hub Location Problems, Doctor of Philosophy Thesis, Bilkent University, Ankara, Turkey, 1999. |
[31] |
H. E. Lee, K. H. Park and Z. Z. Bien,
Iterative fuzzy clustering algorithm with supervision to construct probabilistic fuzzy rule base from numerical data, Fuzzy Systems, IEEE Transactions on, 16 (2008), 263-277.
|
[32] |
J. Li, G. H. Huang, G. Zeng, I. Maqsood and Y. Huang,
An integrated fuzzy-stochastic modeling approach for risk assessment of groundwater contamination, Jour. Environ. Manag., 82 (2007), 173-188.
doi: 10.1016/j.jenvman.2005.12.018. |
[33] |
V. Marianov and D. Serra,
Location models for airline hubs behaving as M/D/c queues, Comp. Oper. Res., 30 (2003), 983-1003.
|
[34] |
M. Merakl and H. Yaman,
Robust intermodal hub location under polyhedral demand uncertainty, Transportation Research Part B: Methodological, 86 (2016), 66-85.
doi: 10.1016/j.trb.2016.01.010. |
[35] |
A. Mirakhorli, Capacitated single-assignment hub covering location problem under fuzzy environment, in Proceedings of the World Congress on Engineering and Computer Science, 2
(2010), 20-22. |
[36] |
V.-W. Mitchell,
Organizational risk perception and reduction: A literature review, British Journal of Management, 6 (1995), 115-133.
doi: 10.1111/j.1467-8551.1995.tb00089.x. |
[37] |
M. Mohammadi, R. Tavakkoli-Moghaddam and R. Rostami,
A multi-objective imperialist competitive algorithm for a capacitated hub covering location problem, Int. J. Indust. Eng. Comp., 2 (2011), 671-688.
doi: 10.5267/j.ijiec.2010.08.003. |
[38] |
M. Mohammadi, F. Jolai and R. Tavakkoli-Moghaddam,
Solving a new stochastic multi-mode p-hub covering location problem considering risk by a novel multi-objective algorithm, Appl. Math. Model., 37 (2013), 10053-10073.
doi: 10.1016/j.apm.2013.05.063. |
[39] |
M. S. Pishvaee, J. Razmi and S. A. Torabi,
An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain, Trans. Res. Part E: Log. Trans. Rev., 67 (2014), 14-38.
|
[40] |
T. K. Roy and M. Maiti,
A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity, Eur. J. Oper. Res., 99 (1997), 425-432.
doi: 10.1016/S0377-2217(96)00163-4. |
[41] |
E. M. de Sá, R. Morabito and R. S. de Camargo,
Benders decomposition applied to a robust multiple allocation incomplete hub location problem, Computers & Operations Research, 89 (2018), 31-50.
doi: 10.1016/j.cor.2017.08.001. |
[42] |
E. M. de Sá, R. Morabito and R. S. de Camargo,
Efficient Benders decomposition algorithms for the robust multiple allocation incomplete hub location problem with service time requirements, Expert Systems with Applications, 93 (2018), 50-61.
|
[43] |
E. M. de Sá, R. S. de Camargo and G. de Miranda,
An improved Benders decomposition algorithm for the tree of hubs location problem, European J. Oper. Res., 226 (2013), 185-202.
doi: 10.1016/j.ejor.2012.10.051. |
[44] |
F. S. Salman and E. Yücel,
Emergency facility location under random network damage: Insights from the Istanbul case, Comput. Oper. Res., 62 (2015), 266-281.
doi: 10.1016/j.cor.2014.07.015. |
[45] |
T. Santoso, S. Ahmed, M. Goetschalckx and A. Shapiro,
A stochastic programming approach for supply chain network design under uncertainty, Eur. J. Oper. Res., 167 (2005), 96-115.
doi: 10.1016/j.ejor.2004.01.046. |
[46] |
E. S. Sheppard,
A conceptual framework for dynamic location-Allocation analysis, Environment and Planning A, 6 (1974), 547-564.
doi: 10.1068/a060547. |
[47] |
T. Sim, T. J. Lowe and B. W. Thomas,
The stochastic p-hub center problem with service-level constraints, Comput. Oper. Res., 36 (2009), 3166-3177.
doi: 10.1016/j.cor.2008.11.020. |
[48] |
L. V. Snyder, M. S. Daskin and C. P. Teo,
The stochastic location model with risk pooling, Eur. J. Oper. Res., 179 (2007), 1221-1238.
doi: 10.1016/j.ejor.2005.03.076. |
[49] |
L. V. Snyder, M. P. Scaparra, M. S. Daskin and R. L. Church,
Planning for disruptions in supply chain networks, Tutorials in Operations Research, (2006), 234-257.
doi: 10.1287/educ.1063.0025. |
[50] |
F. Taghipourian, I. Mahdavi, N. Mahdavi-Amiri and A. Makui,
A fuzzy programming approach for dynamic virtual hub location problem, Appl. Math. Model., 36 (2012), 3257-3270.
doi: 10.1016/j.apm.2011.10.016. |
[51] |
A. Tajbakhsh, H. Haleh and J. Razmi, A multi-objective model to single-allocation ordered hub location problems by genetic algorithm,
Int. J. Acad. Res. Bus. Soc. Sci., 3 (2013). Available from: http://hrmars.com/admin/pics/1640.pdf. |
[52] |
S. A. Torabi and E. Hassini,
An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 159 (2008), 193-214.
doi: 10.1016/j.fss.2007.08.010. |
[53] |
A. D. Vasconcelos, C. D. Nassi and L. A. Lopes,
The uncapacitated hub location problem in networks under decentralized management, Comput. Oper. Res., 38 (2011), 1656-1666.
doi: 10.1016/j.cor.2011.03.004. |
[54] |
T.-H. Yang,
Stochastic air freight hub location and flight routes planning, Appl. Math. Model., 33 (2009), 4424-4430.
doi: 10.1016/j.apm.2009.03.018. |
[55] |
K. Yang, Y. Liu and G. Yang,
An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem, Comput. Indust. Eng., 64 (2013), 133-142.
doi: 10.1016/j.cie.2012.09.006. |
[56] |
L. A. Zadeh,
Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
[57] |
H. Zhai, Y. Liu and W. Chen,
Applying minimum-risk criterion to stochastic hub location problems, Procedia Engineering, 29 (2012), 2313-2321.
doi: 10.1016/j.proeng.2012.01.307. |
[58] |
URL: http://www.bigstory.ap.org/article/indonesias-mount-kelud-java-island-erupts, last visited: September 2014. |
[59] |
URL: http://en.wikipedia.org/wiki/2010_eruptions_of_Eyjafjallaj, last visited: September 2014. |
show all references
References:
[1] |
S. Alumur and B. Y. Kara,
A new model for the hazardous waste location-routing problem, Comp. Oper. Res., 34 (2007), 1406-1423.
doi: 10.1016/j.cor.2005.06.012. |
[2] |
S. A. Alumur, S. Nickel and F. Saldanha-da-Gama,
Hub location under uncertainty, Trans. Res. Part B: Method., 46 (2012), 529-543.
doi: 10.1016/j.trb.2011.11.006. |
[3] |
F. Atoei, E. Teimory and A. Amiri,
Designing reliable supply chain network with disruption risk, Int. J. Indust. Eng. Comp., 4 (2013), 111-126.
|
[4] |
M. Bashiri, M. Mirzaei and M. Randall,
Modeling fuzzy capacitated p-hub center problem and a genetic algorithm solution, Appl. Math. Model., 37 (2013), 3513-3525.
doi: 10.1016/j.apm.2012.07.018. |
[5] |
J. F. Benders,
Partitioning procedures for solving mixed-variables programming problems, Numer. Math., 4 (1962), 238-252.
doi: 10.1007/BF01386316. |
[6] |
R. Caballero, M. González, F. M. Guerrero, J. Molina and C. Paralera,
Solving a multiobjective location routing problem with a metaheuristic based on tabu search. Application to a real case in Andalusia, European Journal of Operational Research, 177 (2007), 1751-1763.
doi: 10.1016/j.ejor.2005.10.017. |
[7] |
R. S. de Camargo, G. de Miranda, Jr. and R. P. M. Ferreira,
A hybrid outer-approximation/benders decomposition algorithm for the single allocation hub location problem under congestion, Oper. Res. Lett., 39 (2011), 329-337.
doi: 10.1016/j.orl.2011.06.015. |
[8] |
R. S. de Camargo, G. de Miranda, Jr., R. P. M. Ferreira and H. P. Luna,
Multiple allocation hub-and-spoke network design under hub congestion, Comp. Oper. Res., 36 (2009), 3097-3106.
doi: 10.1016/j.cor.2008.10.004. |
[9] |
R. S. de Camargo, G. de Miranda, Jr. and H. P. Luna,
Benders decomposition for the uncapacitated multiple allocation hub location problem, Comp. Oper. Res., 35 (2008), 1047-1064.
doi: 10.1016/j.cor.2006.07.002. |
[10] |
R. S. de Camargo, G. de Miranda, Jr. and H. L. P. Luna,
Benders decomposition for hub location problems with economies of scale, Transportation Science, 43 (2008), 86-97.
doi: 10.1287/trsc.1080.0233. |
[11] |
J. F. Campbell,
Integer programming formulations of discrete hub location problems, Eur. J. Oper. R., 72 (1994), 387-405.
doi: 10.1016/0377-2217(94)90318-2. |
[12] |
Z. Chen, H. Li, H. Ren, Q. Xu and J. Hong,
A total environmental risk assessment model for international hub airports, Int. J. Proj. Man., 29 (2011), 856-866.
doi: 10.1016/j.ijproman.2011.03.004. |
[13] |
G. Chen and T. T. Pham, Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems, CRC Press, 2000.
doi: 10.1201/9781420039818.![]() ![]() |
[14] |
I. Contreras, J.-F. Cordeau and G. Laporte,
Benders decomposition for large-scale uncapacitated hub location, Operations Research, 59 (2011), 1477-1490.
doi: 10.1287/opre.1110.0965. |
[15] |
I. Contreras, J.-F. Cordeau and G. Laporte,
Stochastic uncapacitated hub location, Eur. J. Oper. Res., 212 (2011), 518-528.
doi: 10.1016/j.ejor.2011.02.018. |
[16] |
I. Contreras, J.-F. Cordeau and G. Laporte,
Exact solution of large-scale hub location problems with multiple capacity levels, Transportation Science, 46 (2012), 439-459.
doi: 10.1287/trsc.1110.0398. |
[17] |
S. Davari, M. H. Fazel Zarandi and A. Hemmati,
Maximal covering location problem (MCLP) with fuzzy travel times, Expert Systems with Applications, 38 (2011), 14535-14541.
doi: 10.1016/j.eswa.2011.05.031. |
[18] |
K. Deb,
Multi-objective Optimization Using Evolutionary Algorithms, Wiley-Interscience Series in Systems and Optimization, John Wiley & Sons, Ltd., Chichester, 2001. |
[19] |
M. Eghbali, M. Abedzadeh and M. Setak,
Multi-objective reliable hub covering location considering customer convenience using NSGA-Ⅱ, Int. J. Syst. Assur. Eng. Manag., 5 (2014), 450-460.
doi: 10.1007/s13198-013-0189-y. |
[20] |
E. Erkut and O. Alp,
Designing a road network for hazardous materials shipments, Comp. Oper. Res., 34 (2007), 1389-1405.
|
[21] |
A. Eydi and A. Mirakhorli, An extended model for the uncapacitated single allocation hub covering problem in a fuzzy environment, in Proceedings of the International Multiconference of Engineers and Computer Scientists, International Association of Engineers, Hong Kong, Vol Ⅱ, (2012). |
[22] |
P. Garcia-Herreros, J. M. Wassick and I. E. Grossmann,
Design of resilient supply chains with risk of facility disruptions, Indust. Eng. Chem. Res., 53 (2014), 17240-17251.
doi: 10.1021/ie5004174. |
[23] |
S. Gelareh and S. Nickel, A benders decomposition for hub location problems arising in public
transport, in Operations Research Proceedings 2007 Part Ⅵ, Springer Berlin Heidelberg,
2008,129-134. |
[24] |
B. Gendron,
Decomposition methods for network design, Procedia-Social and Behavioral Sciences, 20 (2011), 31-37.
doi: 10.1016/j.sbspro.2011.08.006. |
[25] |
A. M. Geoffrion,
Generalized Benders decomposition, J. Optimization Theory Appl., 10 (1972), 237-260.
doi: 10.1007/BF00934810. |
[26] |
M. da Graça Costa, M. E. Captivo and J. Clímaco,
Capacitated single allocation hub location problem-A bi-criteria approach, Comp. Oper. Res., 35 (2008), 3671-3695.
|
[27] |
I. Heckmann, T. Comes and S. Nickel,
A critical review on supply chain risk-Definition, measure and modeling, Omega, 52 (2015), 119-132.
doi: 10.1016/j.omega.2014.10.004. |
[28] |
C. L. Hwang and K. Yoon,
Multiple Attributes Decision Making. Methods and Applications, Springer-Verlag, Berlin-New York, 1981. |
[29] |
A. Jabbarzadeh, S. G. Jalali Naini, H. Davoudpour and N. Azad, Designing a supply chain network under the risk of disruptions,
Math. Probl. Eng., (2012), Art. ID 234324, 23 pp.
doi: 10.1155/2012/234324. |
[30] |
B. Y. Kara,
Modeling and Analysis of Issues in Hub Location Problems, Doctor of Philosophy Thesis, Bilkent University, Ankara, Turkey, 1999. |
[31] |
H. E. Lee, K. H. Park and Z. Z. Bien,
Iterative fuzzy clustering algorithm with supervision to construct probabilistic fuzzy rule base from numerical data, Fuzzy Systems, IEEE Transactions on, 16 (2008), 263-277.
|
[32] |
J. Li, G. H. Huang, G. Zeng, I. Maqsood and Y. Huang,
An integrated fuzzy-stochastic modeling approach for risk assessment of groundwater contamination, Jour. Environ. Manag., 82 (2007), 173-188.
doi: 10.1016/j.jenvman.2005.12.018. |
[33] |
V. Marianov and D. Serra,
Location models for airline hubs behaving as M/D/c queues, Comp. Oper. Res., 30 (2003), 983-1003.
|
[34] |
M. Merakl and H. Yaman,
Robust intermodal hub location under polyhedral demand uncertainty, Transportation Research Part B: Methodological, 86 (2016), 66-85.
doi: 10.1016/j.trb.2016.01.010. |
[35] |
A. Mirakhorli, Capacitated single-assignment hub covering location problem under fuzzy environment, in Proceedings of the World Congress on Engineering and Computer Science, 2
(2010), 20-22. |
[36] |
V.-W. Mitchell,
Organizational risk perception and reduction: A literature review, British Journal of Management, 6 (1995), 115-133.
doi: 10.1111/j.1467-8551.1995.tb00089.x. |
[37] |
M. Mohammadi, R. Tavakkoli-Moghaddam and R. Rostami,
A multi-objective imperialist competitive algorithm for a capacitated hub covering location problem, Int. J. Indust. Eng. Comp., 2 (2011), 671-688.
doi: 10.5267/j.ijiec.2010.08.003. |
[38] |
M. Mohammadi, F. Jolai and R. Tavakkoli-Moghaddam,
Solving a new stochastic multi-mode p-hub covering location problem considering risk by a novel multi-objective algorithm, Appl. Math. Model., 37 (2013), 10053-10073.
doi: 10.1016/j.apm.2013.05.063. |
[39] |
M. S. Pishvaee, J. Razmi and S. A. Torabi,
An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain, Trans. Res. Part E: Log. Trans. Rev., 67 (2014), 14-38.
|
[40] |
T. K. Roy and M. Maiti,
A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity, Eur. J. Oper. Res., 99 (1997), 425-432.
doi: 10.1016/S0377-2217(96)00163-4. |
[41] |
E. M. de Sá, R. Morabito and R. S. de Camargo,
Benders decomposition applied to a robust multiple allocation incomplete hub location problem, Computers & Operations Research, 89 (2018), 31-50.
doi: 10.1016/j.cor.2017.08.001. |
[42] |
E. M. de Sá, R. Morabito and R. S. de Camargo,
Efficient Benders decomposition algorithms for the robust multiple allocation incomplete hub location problem with service time requirements, Expert Systems with Applications, 93 (2018), 50-61.
|
[43] |
E. M. de Sá, R. S. de Camargo and G. de Miranda,
An improved Benders decomposition algorithm for the tree of hubs location problem, European J. Oper. Res., 226 (2013), 185-202.
doi: 10.1016/j.ejor.2012.10.051. |
[44] |
F. S. Salman and E. Yücel,
Emergency facility location under random network damage: Insights from the Istanbul case, Comput. Oper. Res., 62 (2015), 266-281.
doi: 10.1016/j.cor.2014.07.015. |
[45] |
T. Santoso, S. Ahmed, M. Goetschalckx and A. Shapiro,
A stochastic programming approach for supply chain network design under uncertainty, Eur. J. Oper. Res., 167 (2005), 96-115.
doi: 10.1016/j.ejor.2004.01.046. |
[46] |
E. S. Sheppard,
A conceptual framework for dynamic location-Allocation analysis, Environment and Planning A, 6 (1974), 547-564.
doi: 10.1068/a060547. |
[47] |
T. Sim, T. J. Lowe and B. W. Thomas,
The stochastic p-hub center problem with service-level constraints, Comput. Oper. Res., 36 (2009), 3166-3177.
doi: 10.1016/j.cor.2008.11.020. |
[48] |
L. V. Snyder, M. S. Daskin and C. P. Teo,
The stochastic location model with risk pooling, Eur. J. Oper. Res., 179 (2007), 1221-1238.
doi: 10.1016/j.ejor.2005.03.076. |
[49] |
L. V. Snyder, M. P. Scaparra, M. S. Daskin and R. L. Church,
Planning for disruptions in supply chain networks, Tutorials in Operations Research, (2006), 234-257.
doi: 10.1287/educ.1063.0025. |
[50] |
F. Taghipourian, I. Mahdavi, N. Mahdavi-Amiri and A. Makui,
A fuzzy programming approach for dynamic virtual hub location problem, Appl. Math. Model., 36 (2012), 3257-3270.
doi: 10.1016/j.apm.2011.10.016. |
[51] |
A. Tajbakhsh, H. Haleh and J. Razmi, A multi-objective model to single-allocation ordered hub location problems by genetic algorithm,
Int. J. Acad. Res. Bus. Soc. Sci., 3 (2013). Available from: http://hrmars.com/admin/pics/1640.pdf. |
[52] |
S. A. Torabi and E. Hassini,
An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 159 (2008), 193-214.
doi: 10.1016/j.fss.2007.08.010. |
[53] |
A. D. Vasconcelos, C. D. Nassi and L. A. Lopes,
The uncapacitated hub location problem in networks under decentralized management, Comput. Oper. Res., 38 (2011), 1656-1666.
doi: 10.1016/j.cor.2011.03.004. |
[54] |
T.-H. Yang,
Stochastic air freight hub location and flight routes planning, Appl. Math. Model., 33 (2009), 4424-4430.
doi: 10.1016/j.apm.2009.03.018. |
[55] |
K. Yang, Y. Liu and G. Yang,
An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem, Comput. Indust. Eng., 64 (2013), 133-142.
doi: 10.1016/j.cie.2012.09.006. |
[56] |
L. A. Zadeh,
Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
[57] |
H. Zhai, Y. Liu and W. Chen,
Applying minimum-risk criterion to stochastic hub location problems, Procedia Engineering, 29 (2012), 2313-2321.
doi: 10.1016/j.proeng.2012.01.307. |
[58] |
URL: http://www.bigstory.ap.org/article/indonesias-mount-kelud-java-island-erupts, last visited: September 2014. |
[59] |
URL: http://en.wikipedia.org/wiki/2010_eruptions_of_Eyjafjallaj, last visited: September 2014. |






Reference | Year | Model | Number of objectives | MODM1 approach | Risk assessment approach | Risk factors | Objective functions | Uncertainty | Solution approach | |||
Fuzzy | Stochastic | |||||||||||
Parameter | Approach | Parameter | Approach | |||||||||
Chen et al. [12] | 2011 | - | - | - | ANF | Environmental risks | - | - | - | - | - | - |
Snyder et al. [48] | 2006 | Supply chain network | Single | - | Expected value, Worst-case value | Supply risks | Cost | - | - | Cost | Scenario-based | - |
Jabbarzadeh et al. [29] | 2012 | Supply chain network | Single | - | Expected value | Environmental and operational risks | Profit | - | - | Cost | Scenario-based | Lagrangian relaxation, GA |
Atoei et al. [3] | 2013 | Supply chain network | Multiple | ε-constraint method | Expected value | Environmental, macro and supply risks | Cost/ Reliability | - | - | Reliability/ Capacity | Scenario-based | NSGA-Ⅱ |
Garcia-Herreros et al. [22] | 2014 | Supply chain network | Single | - | Expected value | Operational risks | Cost | - | - | The availabilityof DC | Scenario-based | Accelerated BD |
Pishvaee et al. [39] | 2014 | Supply chain network | Multiple | WSM2 | possibility | Environmental, macro and | Cost/ Environmental impact/ Social responsibility | Social impact | Credibility | - | - | Accelerated BD |
Marianov et al. [33] | 2003 | HLF | Single | - | - | - | Cost | - | - | Number of plane | Probability | TS |
Snyder et al. [49] | 2007 | Location model | Single | - | - | - | Cost | - | - | Cost | Scenario-based | Lagrangian relaxation |
Camargo et al. [9] | 2008 | HLP | Single | - | - | - | Cost | - | - | - | - | BD |
Costa et al. [26] | 2008 | HLF | Multiple | WSM/WCD3 | - | - | Cost/Tiine | - | - | - | - | An interactive decision-aid approach |
Sim et al. [47] | 2009 | P-hub center problem | Single | - | - | - | Time | - | - | Time | Chance constraint | Radial heuristic & Teitz-Bart heuristic |
Yang [54] | 2009 | HLP | Single | - | - | Cost | - | - | Demand | Scenario-based | Heuristic methods | |
Vasconcelos et al. [53] | 2011 | HLP | Single | - | - | Cost | - | - | - | Probability | - | |
Camargo et al. [7] | 2011 | HLP | Single | - | - | Cost | - | - | Demand/ Cost | Probability | BD & OA | |
Contreras et al. [15] | 2011 | HLP | Single | - | - | Cost | - | - | Demand/ Cost | Stochastic | BD | |
Mohainmadi et al. [37] | 2011 | Hub covering location | Multiple | WSM | - | Cost/Time | - | - | - | - | ICA | |
Alumur et al. [2] | 2012 | HLP | Single | - | - | Max cost | - | - | Demand/ Cost | Scenario-based | - | |
Taghipourian et al. [50] | 2012 | Dynamic virtual hub location | Single | _ | - | Cost | Flow and capacity | Fuzzy numbers | - | - | - | |
Zhai et al. [57] | 2012 | HLF | Single | - | Probability function | Macro risks | Services level | - | - | Demand | Chance constraint | B& B |
Bashiri et al. [4] | 2013 | F-hub center problem | Single | - | - | - | Max time | Qualitative parameters | Fuzzy VIKOR method | - | - | GA |
Davari et al. [17] | 2011 | maximal covering problem | Single | - | - | - | Time | Time | Credibility | - | - | SA4 |
Yang et al. [55] | 2013 | P-hub center problem | Single | - | - | - | Time | Travel time | Credibility | - | - | PSO5 |
Mahaminadi et al. [38] | 2013 | Hub covering problem | Multiple | MOICA6 | Reliability constraints | Environmental and operational risks | Cost/Max time | - | - | Time | Probability | MOICA |
Eghhali et al. [19] | 2013 | Hub covering problem | Multiple | - | - | Cost/ Intermediate links | _ | _ | Reliability of path | Reliability | NSGA-Ⅱ | |
Proposed model | 2018 | HLP | Multiple | WSM | Regret/ Expected value | Environmental, operational, macro, security and supply risks | Cost/ Risk | Risk factors | Fuzzy numbers | Cost/ Risk factors | Scenario-based | BD |
Reference | Year | Model | Number of objectives | MODM1 approach | Risk assessment approach | Risk factors | Objective functions | Uncertainty | Solution approach | |||
Fuzzy | Stochastic | |||||||||||
Parameter | Approach | Parameter | Approach | |||||||||
Chen et al. [12] | 2011 | - | - | - | ANF | Environmental risks | - | - | - | - | - | - |
Snyder et al. [48] | 2006 | Supply chain network | Single | - | Expected value, Worst-case value | Supply risks | Cost | - | - | Cost | Scenario-based | - |
Jabbarzadeh et al. [29] | 2012 | Supply chain network | Single | - | Expected value | Environmental and operational risks | Profit | - | - | Cost | Scenario-based | Lagrangian relaxation, GA |
Atoei et al. [3] | 2013 | Supply chain network | Multiple | ε-constraint method | Expected value | Environmental, macro and supply risks | Cost/ Reliability | - | - | Reliability/ Capacity | Scenario-based | NSGA-Ⅱ |
Garcia-Herreros et al. [22] | 2014 | Supply chain network | Single | - | Expected value | Operational risks | Cost | - | - | The availabilityof DC | Scenario-based | Accelerated BD |
Pishvaee et al. [39] | 2014 | Supply chain network | Multiple | WSM2 | possibility | Environmental, macro and | Cost/ Environmental impact/ Social responsibility | Social impact | Credibility | - | - | Accelerated BD |
Marianov et al. [33] | 2003 | HLF | Single | - | - | - | Cost | - | - | Number of plane | Probability | TS |
Snyder et al. [49] | 2007 | Location model | Single | - | - | - | Cost | - | - | Cost | Scenario-based | Lagrangian relaxation |
Camargo et al. [9] | 2008 | HLP | Single | - | - | - | Cost | - | - | - | - | BD |
Costa et al. [26] | 2008 | HLF | Multiple | WSM/WCD3 | - | - | Cost/Tiine | - | - | - | - | An interactive decision-aid approach |
Sim et al. [47] | 2009 | P-hub center problem | Single | - | - | - | Time | - | - | Time | Chance constraint | Radial heuristic & Teitz-Bart heuristic |
Yang [54] | 2009 | HLP | Single | - | - | Cost | - | - | Demand | Scenario-based | Heuristic methods | |
Vasconcelos et al. [53] | 2011 | HLP | Single | - | - | Cost | - | - | - | Probability | - | |
Camargo et al. [7] | 2011 | HLP | Single | - | - | Cost | - | - | Demand/ Cost | Probability | BD & OA | |
Contreras et al. [15] | 2011 | HLP | Single | - | - | Cost | - | - | Demand/ Cost | Stochastic | BD | |
Mohainmadi et al. [37] | 2011 | Hub covering location | Multiple | WSM | - | Cost/Time | - | - | - | - | ICA | |
Alumur et al. [2] | 2012 | HLP | Single | - | - | Max cost | - | - | Demand/ Cost | Scenario-based | - | |
Taghipourian et al. [50] | 2012 | Dynamic virtual hub location | Single | _ | - | Cost | Flow and capacity | Fuzzy numbers | - | - | - | |
Zhai et al. [57] | 2012 | HLF | Single | - | Probability function | Macro risks | Services level | - | - | Demand | Chance constraint | B& B |
Bashiri et al. [4] | 2013 | F-hub center problem | Single | - | - | - | Max time | Qualitative parameters | Fuzzy VIKOR method | - | - | GA |
Davari et al. [17] | 2011 | maximal covering problem | Single | - | - | - | Time | Time | Credibility | - | - | SA4 |
Yang et al. [55] | 2013 | P-hub center problem | Single | - | - | - | Time | Travel time | Credibility | - | - | PSO5 |
Mahaminadi et al. [38] | 2013 | Hub covering problem | Multiple | MOICA6 | Reliability constraints | Environmental and operational risks | Cost/Max time | - | - | Time | Probability | MOICA |
Eghhali et al. [19] | 2013 | Hub covering problem | Multiple | - | - | Cost/ Intermediate links | _ | _ | Reliability of path | Reliability | NSGA-Ⅱ | |
Proposed model | 2018 | HLP | Multiple | WSM | Regret/ Expected value | Environmental, operational, macro, security and supply risks | Cost/ Risk | Risk factors | Fuzzy numbers | Cost/ Risk factors | Scenario-based | BD |
Problem | No. of constraints | No. of variables | |
Binary | Continues | ||
RHLP-FSE | |||
Classical HLP |
Problem | No. of constraints | No. of variables | |
Binary | Continues | ||
RHLP-FSE | |||
Classical HLP |
|N||H| | No of variables | No of constraints | B&B solution | BD solution | No of iterations | %Gap | |||||||
Continues | Binary | Equality | Inequality | Time (s) | Time (s) | ||||||||
4 | 9 | 21736 | 9 | 245 | 65520 | 0.3214 | 4 | 92.9 | 0.3214 | 4 | 153.2 | 2 | 0 |
6 | 7 | 28456 | 7 | 545 | 91665 | 0.3255 | 6 | 98.3 | 0.3255 | 6 | 194.5 | 7 | 0 |
6 | 9 | 46575 | 9 | 540 | 147830 | 0.3410 | 3, 4 | 108.9 | 0.3410 | 3, 4 | 178.7 | 16 | 0 |
8 | 7 | 49456 | 7 | 965 | 160125 | 0.3289 | 6 | 265.2 | 0.3289 | 6 | 234.3 | 8 | 0 |
10 | 7 | 76336 | 7 | 1505 | 247905 | n.a. | n.a. | _1 | 0.2979 | 2, 4 | 478.3 | 11 | 0 |
12 | 7 | 109095 | 7 | 2160 | 355010 | n.a. | n.a. | _1 | 0.2390 | 3, 5, 7 | 763.2 | 11 | 10-6 |
15 | 7 | 169261 | 7 | 3380 | 551880 | n.a. | n.a. | _2 | 0.2881 | 2, 5, 7 | 1101.1 | 8 | 10-5 |
16 | 5 | 98775 | 5 | 3840 | 332330 | n.a. | n.a. | _2 | 0.2671 | 5 | 1371.6 | 7 | 10-4 |
18 | 5 | 124575 | 5 | 4860 | 419630 | n.a. | n.a. | _2 | 0.2648 | 5 | 1427.4 | 10 | 10-4 |
20 | 5 | 298936 | 5 | 6005 | 976605 | n.a. | n.a. | _2 | 0.2754 | 4, 18 | 1872.2 | 9 | 10-3 |
B&B: B&B result, BD: Benders decomposition result, −1 : Time limitation, −2: Lack of memory |
|N||H| | No of variables | No of constraints | B&B solution | BD solution | No of iterations | %Gap | |||||||
Continues | Binary | Equality | Inequality | Time (s) | Time (s) | ||||||||
4 | 9 | 21736 | 9 | 245 | 65520 | 0.3214 | 4 | 92.9 | 0.3214 | 4 | 153.2 | 2 | 0 |
6 | 7 | 28456 | 7 | 545 | 91665 | 0.3255 | 6 | 98.3 | 0.3255 | 6 | 194.5 | 7 | 0 |
6 | 9 | 46575 | 9 | 540 | 147830 | 0.3410 | 3, 4 | 108.9 | 0.3410 | 3, 4 | 178.7 | 16 | 0 |
8 | 7 | 49456 | 7 | 965 | 160125 | 0.3289 | 6 | 265.2 | 0.3289 | 6 | 234.3 | 8 | 0 |
10 | 7 | 76336 | 7 | 1505 | 247905 | n.a. | n.a. | _1 | 0.2979 | 2, 4 | 478.3 | 11 | 0 |
12 | 7 | 109095 | 7 | 2160 | 355010 | n.a. | n.a. | _1 | 0.2390 | 3, 5, 7 | 763.2 | 11 | 10-6 |
15 | 7 | 169261 | 7 | 3380 | 551880 | n.a. | n.a. | _2 | 0.2881 | 2, 5, 7 | 1101.1 | 8 | 10-5 |
16 | 5 | 98775 | 5 | 3840 | 332330 | n.a. | n.a. | _2 | 0.2671 | 5 | 1371.6 | 7 | 10-4 |
18 | 5 | 124575 | 5 | 4860 | 419630 | n.a. | n.a. | _2 | 0.2648 | 5 | 1427.4 | 10 | 10-4 |
20 | 5 | 298936 | 5 | 6005 | 976605 | n.a. | n.a. | _2 | 0.2754 | 4, 18 | 1872.2 | 9 | 10-3 |
B&B: B&B result, BD: Benders decomposition result, −1 : Time limitation, −2: Lack of memory |
|N||H| | No of variables | No of constraints | B&B solution | BD solution | No of iterations | %Gap | |||||||
Continues | Binary | Equality | Inequality | Time (s) | Time (s) | ||||||||
4 | 9 | 21736 | 9 | 245 | 65520 | 0.2670 | 4 | 87.4 | 0.2670 | 4 | 133.4 | 2 | 0 |
6 | 7 | 28456 | 7 | 545 | 91665 | 0.2487 | 1 | 201.4 | 0.2487 | 1 | 198.9 | 4 | 0 |
6 | 9 | 46575 | 9 | 540 | 147830 | 0.2500 | 6 | 214.4 | 0.2500 | 6 | 220.0 | 5 | 0 |
8 | 7 | 49456 | 7 | 965 | 160125 | 0.2384 | 6 | 264.2 | 0.2384 | 6 | 248.3 | 3 | 0 |
10 | 7 | 76336 | 7 | 1505 | 247905 | n.a. | n.a. | _1 | 0.2425 | 5 | 348.5 | 5 | 0 |
12 | 7 | 109095 | 7 | 2160 | 355010 | n.a. | n.a. | _1 | 0.3131 | 4, 7 | 654.2 | 7 | 10-6 |
15 | 7 | 169261 | 7 | 3380 | 551880 | n.a. | n.a. | _2 | 0.2657 | 2, 5 | 985.3 | 6 | 10-5 |
16 | 5 | 98775 | 5 | 3840 | 332330 | n.a. | n.a. | _2 | 0.3117 | 5 | 1321.6 | 6 | 10-4 |
18 | 5 | 124575 | 5 | 4860 | 419630 | n.a. | n.a. | _2 | 0.3736 | 2 | 1563.2 | 12 | 10-4 |
20 | 5 | 298936 | 5 | 6005 | 976605 | n.a. | n.a. | _2 | 0.2576 | 20 | 1983.1 | 7 | 10-3 |
|N||H| | No of variables | No of constraints | B&B solution | BD solution | No of iterations | %Gap | |||||||
Continues | Binary | Equality | Inequality | Time (s) | Time (s) | ||||||||
4 | 9 | 21736 | 9 | 245 | 65520 | 0.2670 | 4 | 87.4 | 0.2670 | 4 | 133.4 | 2 | 0 |
6 | 7 | 28456 | 7 | 545 | 91665 | 0.2487 | 1 | 201.4 | 0.2487 | 1 | 198.9 | 4 | 0 |
6 | 9 | 46575 | 9 | 540 | 147830 | 0.2500 | 6 | 214.4 | 0.2500 | 6 | 220.0 | 5 | 0 |
8 | 7 | 49456 | 7 | 965 | 160125 | 0.2384 | 6 | 264.2 | 0.2384 | 6 | 248.3 | 3 | 0 |
10 | 7 | 76336 | 7 | 1505 | 247905 | n.a. | n.a. | _1 | 0.2425 | 5 | 348.5 | 5 | 0 |
12 | 7 | 109095 | 7 | 2160 | 355010 | n.a. | n.a. | _1 | 0.3131 | 4, 7 | 654.2 | 7 | 10-6 |
15 | 7 | 169261 | 7 | 3380 | 551880 | n.a. | n.a. | _2 | 0.2657 | 2, 5 | 985.3 | 6 | 10-5 |
16 | 5 | 98775 | 5 | 3840 | 332330 | n.a. | n.a. | _2 | 0.3117 | 5 | 1321.6 | 6 | 10-4 |
18 | 5 | 124575 | 5 | 4860 | 419630 | n.a. | n.a. | _2 | 0.3736 | 2 | 1563.2 | 12 | 10-4 |
20 | 5 | 298936 | 5 | 6005 | 976605 | n.a. | n.a. | _2 | 0.2576 | 20 | 1983.1 | 7 | 10-3 |
|N||H| | No of variables | No of constraints | CM solution | RHLP-FSE solution | |||||||
Continues | Binary | Equality | Inequality | z*CM | Lost flows | z*RHLP −FSE | Lost flows | ||||
4 | 5 | 6976 | 5 | 245 | 22725 | 1, 3, 4 | 7543 | 3, 4 | 6060 | ||
4 | 7 | 13336 | 7 | 245 | 42525 | 1, 2, 3, 4 | 12110 | 4 | 9599 | ||
6 | 5 | 14776 | 5 | 545 | 48825 | 1, 3, 4 | 3714 | 2 | 4892 | ||
6 | 7 | 28456 | 7 | 545 | 91665 | 1, 3, 4, 6 | 8825 | 2, 4 | 5982 | ||
8 | 5 | 25576 | 5 | 965 | 85125 | 3, 5 | 9691 | 6 | 598 | ||
8 | 7 | 49456 | 7 | 965 | 160125 | 1, 3, 4, 6, 7 | 9687 | 6, 7 | 1446 |
|N||H| | No of variables | No of constraints | CM solution | RHLP-FSE solution | |||||||
Continues | Binary | Equality | Inequality | z*CM | Lost flows | z*RHLP −FSE | Lost flows | ||||
4 | 5 | 6976 | 5 | 245 | 22725 | 1, 3, 4 | 7543 | 3, 4 | 6060 | ||
4 | 7 | 13336 | 7 | 245 | 42525 | 1, 2, 3, 4 | 12110 | 4 | 9599 | ||
6 | 5 | 14776 | 5 | 545 | 48825 | 1, 3, 4 | 3714 | 2 | 4892 | ||
6 | 7 | 28456 | 7 | 545 | 91665 | 1, 3, 4, 6 | 8825 | 2, 4 | 5982 | ||
8 | 5 | 25576 | 5 | 965 | 85125 | 3, 5 | 9691 | 6 | 598 | ||
8 | 7 | 49456 | 7 | 965 | 160125 | 1, 3, 4, 6, 7 | 9687 | 6, 7 | 1446 |
[1] |
Maryam Esmaeili, Samane Sedehzade. Designing a hub location and pricing network in a competitive environment. Journal of Industrial and Management Optimization, 2020, 16 (2) : 653-667. doi: 10.3934/jimo.2018172 |
[2] |
Anh Son Ta, Le Thi Hoai An, Djamel Khadraoui, Pham Dinh Tao. Solving Partitioning-Hub Location-Routing Problem using DCA. Journal of Industrial and Management Optimization, 2012, 8 (1) : 87-102. doi: 10.3934/jimo.2012.8.87 |
[3] |
Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial and Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647 |
[4] |
Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215 |
[5] |
Alireza Goli, Hasan Khademi Zare, Reza Tavakkoli-Moghaddam, Ahmad Sadeghieh. Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 187-209. doi: 10.3934/naco.2019014 |
[6] |
Ying Ji, Shaojian Qu, Yeming Dai. A new approach for worst-case regret portfolio optimization problem. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 761-770. doi: 10.3934/dcdss.2019050 |
[7] |
Liping Zhang, Soon-Yi Wu. Robust solutions to Euclidean facility location problems with uncertain data. Journal of Industrial and Management Optimization, 2010, 6 (4) : 751-760. doi: 10.3934/jimo.2010.6.751 |
[8] |
Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327 |
[9] |
Matthew H. Henry, Yacov Y. Haimes. Robust multiobjective dynamic programming: Minimax envelopes for efficient decisionmaking under scenario uncertainty. Journal of Industrial and Management Optimization, 2009, 5 (4) : 791-824. doi: 10.3934/jimo.2009.5.791 |
[10] |
Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle location-allocation problems with customer priorities. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1753-1769. doi: 10.3934/jimo.2020044 |
[11] |
Gaidi Li, Zhen Wang, Dachuan Xu. An approximation algorithm for the $k$-level facility location problem with submodular penalties. Journal of Industrial and Management Optimization, 2012, 8 (3) : 521-529. doi: 10.3934/jimo.2012.8.521 |
[12] |
Fengming Lin, Xiaolei Fang, Zheming Gao. Distributionally Robust Optimization: A review on theory and applications. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 159-212. doi: 10.3934/naco.2021057 |
[13] |
Rongliang Chen, Jizu Huang, Xiao-Chuan Cai. A parallel domain decomposition algorithm for large scale image denoising. Inverse Problems and Imaging, 2019, 13 (6) : 1259-1282. doi: 10.3934/ipi.2019055 |
[14] |
Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056 |
[15] |
Saber Shiripour, Nezam Mahdavi-Amiri. Median location problem with two probabilistic line barriers: Extending the Hook and Jeeves algorithm. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021128 |
[16] |
Jutamas Kerdkaew, Rabian Wangkeeree. Characterizing robust weak sharp solution sets of convex optimization problems with uncertainty. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2651-2673. doi: 10.3934/jimo.2019074 |
[17] |
Xiang-Kai Sun, Xian-Jun Long, Hong-Yong Fu, Xiao-Bing Li. Some characterizations of robust optimal solutions for uncertain fractional optimization and applications. Journal of Industrial and Management Optimization, 2017, 13 (2) : 803-824. doi: 10.3934/jimo.2016047 |
[18] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial and Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[19] |
Lingshuang Kong, Changjun Yu, Kok Lay Teo, Chunhua Yang. Robust real-time optimization for blending operation of alumina production. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1149-1167. doi: 10.3934/jimo.2016066 |
[20] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial and Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]