• Previous Article
    Single-machine bi-criterion scheduling with release times and exponentially time-dependent learning effects
  • JIMO Home
  • This Issue
  • Next Article
    Performance analysis of a cooperative flow game algorithm in ad hoc networks and a comparison to Dijkstra's algorithm
July  2019, 15(3): 1101-1116. doi: 10.3934/jimo.2018087

Unified optimality conditions for set-valued optimizations

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China

* Corresponding author: Sheng-Jie Li

Received  July 2016 Revised  May 2017 Published  July 2018

Fund Project: This research was supported by the National Natural Science Foundation of China (Grant numbers: 11171362, 11571055).

This paper is devoted to the study of unified optimality conditions for constrained set-valued optimization problems via image space analysis. Necessary and sufficient optimality conditions are given in terms of tangent cones of extended image set. By exploiting such results, we analyse the optimality conditions employing different generalized derivatives.

Citation: Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087
References:
[1]

J. P. Aubin and H. Frankowska, Set-valued Analysis, Birkhauser, Boston, 1990. doi: 10.1007/978-0-8176-4848-0.  Google Scholar

[2]

G. Bigi and M. Castellani, K-epiderivatives for set-valued function and optimization, Math. Methods, 55 (2002), 401-412.  doi: 10.1007/s001860200187.  Google Scholar

[3]

G. Castellani and F. Giannessi, Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems, In Proc. Ninth Internat. Math. Programming Sympos., Budapest. Survey of Mathematical Programming, North-Holland, Amsterdam, 2 (1979), 423-439.  Google Scholar

[4]

M. Chinaie and J. Zafarani, A new approach to constrained optimization via image space analysis, Positivity, 20 (2016), 99-114.  doi: 10.1007/s11117-015-0343-7.  Google Scholar

[5]

H. W. Corley, Optimality conditions for maximizations of set-valued functions, J. Optim. Theory Appl., 58 (1988), 1-10.  doi: 10.1007/BF00939767.  Google Scholar

[6]

G. P. CrespiI. Ginchev and M. Rocca, First-order optimality conditions in set-valued optimization, Math. Methods Oper. Res., 63 (2006), 87-106.  doi: 10.1007/s00186-005-0023-7.  Google Scholar

[7]

F. Giannessi, Theorems of the alternative and optimality conditions, J. Optim. Theory Appl., 42 (1984), 331-365.  doi: 10.1007/BF00935321.  Google Scholar

[8]

F. Giannessi, G. Mastroeni and L. Pellegrini, On the theory of vector optimization and variational inequalities image space analysis and separation, in Vector Variational Inequalities and Vector Equilibria, Mathematical Theories (eds F. Giannessi), Kluwer Academic, Dordrecht, 38 (2000), 153-215. doi: 10.1007/978-1-4613-0299-5_11.  Google Scholar

[9]

F. Giannessi, Constrained Optimization and Image Space Analysis, vol. 1: Separation of Sets and Optimality Conditions, Springer, New York, 2005. doi: 10.1007/0-387-28020-0.  Google Scholar

[10]

A. Götz and J. Jahn, The Lagrange multiplier rule in set-valued optimization, SIAM J. Optim., 10 (2000), 331-344.  doi: 10.1137/S1052623496311697.  Google Scholar

[11]

J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization, Math. Methods Oper. Res., 46 (1997), 193-211.  doi: 10.1007/BF01217690.  Google Scholar

[12]

J. Jahn and A. A. Khan, Generalized contingent epiderivatives in set-valued optimization: optimality conditions, Numer. Funct. Anal. Optim., 23 (2002), 807-831.  doi: 10.1081/NFA-120016271.  Google Scholar

[13]

J. Jahn, Vector Optimization. Theory, Applications, and Extensions, Springer, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[14]

A. A. Khan, C. Tammer and C. Zǎlinescu, Set-valued Optimization. An Introduction with Applications, Springer, Heidelberg, 2015. doi: 10.1007/978-3-642-54265-7.  Google Scholar

[15]

J. LiS. Q. Feng and Z. Zhang, A unified approach for constrained extremum problems: Image space analysis, J. Optim. Theory Appl., 159 (2013), 69-92.  doi: 10.1007/s10957-013-0276-x.  Google Scholar

[16]

D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989. doi: 10.1007/978-3-642-50280-4.  Google Scholar

[17]

D. T. Luc, Contingent derivatives of set-valued maps and applications to vector optimization, Math. Program., 50 (1991), 99-111.  doi: 10.1007/BF01594928.  Google Scholar

[18]

A. Moldovan and L. Pellegrini, On regularity for constrained extremum problems. Part1: Sufficient optimality conditions, J. Optim. Theory Appl., 142 (2009), 147-163.  doi: 10.1007/s10957-009-9518-3.  Google Scholar

[19]

A. Moldovan and L. Pellegrini, On regularity for constrained extremum problems. Part 2: Necessary optimality conditions, J. Optim. Theory Appl., 142 (2009), 165-183.  doi: 10.1007/s10957-009-9521-8.  Google Scholar

[20]

A. Taa, Optimality conditions for vector mathematical programming via a theorem of the alternative, J. Math. Anal. Appl., 233 (1999), 233-245.  doi: 10.1006/jmaa.1999.6288.  Google Scholar

[21]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part Ⅰ: image space analysis, J. Optim. Theory Appl., 161 (2014), 738-762.  doi: 10.1007/s10957-013-0468-4.  Google Scholar

[22]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part Ⅱ: Special duality schemes, J. Optim. Theory Appl., 161 (2014), 763-782.  doi: 10.1007/s10957-013-0467-5.  Google Scholar

[23]

S. K. ZhuS. J. Li and K. L. Teo, Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization, J. Glob. Optim., 58 (2014), 673-692.  doi: 10.1007/s10898-013-0067-9.  Google Scholar

show all references

References:
[1]

J. P. Aubin and H. Frankowska, Set-valued Analysis, Birkhauser, Boston, 1990. doi: 10.1007/978-0-8176-4848-0.  Google Scholar

[2]

G. Bigi and M. Castellani, K-epiderivatives for set-valued function and optimization, Math. Methods, 55 (2002), 401-412.  doi: 10.1007/s001860200187.  Google Scholar

[3]

G. Castellani and F. Giannessi, Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems, In Proc. Ninth Internat. Math. Programming Sympos., Budapest. Survey of Mathematical Programming, North-Holland, Amsterdam, 2 (1979), 423-439.  Google Scholar

[4]

M. Chinaie and J. Zafarani, A new approach to constrained optimization via image space analysis, Positivity, 20 (2016), 99-114.  doi: 10.1007/s11117-015-0343-7.  Google Scholar

[5]

H. W. Corley, Optimality conditions for maximizations of set-valued functions, J. Optim. Theory Appl., 58 (1988), 1-10.  doi: 10.1007/BF00939767.  Google Scholar

[6]

G. P. CrespiI. Ginchev and M. Rocca, First-order optimality conditions in set-valued optimization, Math. Methods Oper. Res., 63 (2006), 87-106.  doi: 10.1007/s00186-005-0023-7.  Google Scholar

[7]

F. Giannessi, Theorems of the alternative and optimality conditions, J. Optim. Theory Appl., 42 (1984), 331-365.  doi: 10.1007/BF00935321.  Google Scholar

[8]

F. Giannessi, G. Mastroeni and L. Pellegrini, On the theory of vector optimization and variational inequalities image space analysis and separation, in Vector Variational Inequalities and Vector Equilibria, Mathematical Theories (eds F. Giannessi), Kluwer Academic, Dordrecht, 38 (2000), 153-215. doi: 10.1007/978-1-4613-0299-5_11.  Google Scholar

[9]

F. Giannessi, Constrained Optimization and Image Space Analysis, vol. 1: Separation of Sets and Optimality Conditions, Springer, New York, 2005. doi: 10.1007/0-387-28020-0.  Google Scholar

[10]

A. Götz and J. Jahn, The Lagrange multiplier rule in set-valued optimization, SIAM J. Optim., 10 (2000), 331-344.  doi: 10.1137/S1052623496311697.  Google Scholar

[11]

J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization, Math. Methods Oper. Res., 46 (1997), 193-211.  doi: 10.1007/BF01217690.  Google Scholar

[12]

J. Jahn and A. A. Khan, Generalized contingent epiderivatives in set-valued optimization: optimality conditions, Numer. Funct. Anal. Optim., 23 (2002), 807-831.  doi: 10.1081/NFA-120016271.  Google Scholar

[13]

J. Jahn, Vector Optimization. Theory, Applications, and Extensions, Springer, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[14]

A. A. Khan, C. Tammer and C. Zǎlinescu, Set-valued Optimization. An Introduction with Applications, Springer, Heidelberg, 2015. doi: 10.1007/978-3-642-54265-7.  Google Scholar

[15]

J. LiS. Q. Feng and Z. Zhang, A unified approach for constrained extremum problems: Image space analysis, J. Optim. Theory Appl., 159 (2013), 69-92.  doi: 10.1007/s10957-013-0276-x.  Google Scholar

[16]

D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989. doi: 10.1007/978-3-642-50280-4.  Google Scholar

[17]

D. T. Luc, Contingent derivatives of set-valued maps and applications to vector optimization, Math. Program., 50 (1991), 99-111.  doi: 10.1007/BF01594928.  Google Scholar

[18]

A. Moldovan and L. Pellegrini, On regularity for constrained extremum problems. Part1: Sufficient optimality conditions, J. Optim. Theory Appl., 142 (2009), 147-163.  doi: 10.1007/s10957-009-9518-3.  Google Scholar

[19]

A. Moldovan and L. Pellegrini, On regularity for constrained extremum problems. Part 2: Necessary optimality conditions, J. Optim. Theory Appl., 142 (2009), 165-183.  doi: 10.1007/s10957-009-9521-8.  Google Scholar

[20]

A. Taa, Optimality conditions for vector mathematical programming via a theorem of the alternative, J. Math. Anal. Appl., 233 (1999), 233-245.  doi: 10.1006/jmaa.1999.6288.  Google Scholar

[21]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part Ⅰ: image space analysis, J. Optim. Theory Appl., 161 (2014), 738-762.  doi: 10.1007/s10957-013-0468-4.  Google Scholar

[22]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part Ⅱ: Special duality schemes, J. Optim. Theory Appl., 161 (2014), 763-782.  doi: 10.1007/s10957-013-0467-5.  Google Scholar

[23]

S. K. ZhuS. J. Li and K. L. Teo, Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization, J. Glob. Optim., 58 (2014), 673-692.  doi: 10.1007/s10898-013-0067-9.  Google Scholar

[1]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[2]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[3]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[4]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[5]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[6]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[7]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[8]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[9]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[10]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[11]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[12]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[13]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[14]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[15]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[16]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[17]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[18]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[19]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[20]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (193)
  • HTML views (1086)
  • Cited by (0)

Other articles
by authors

[Back to Top]