-
Previous Article
Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization
- JIMO Home
- This Issue
-
Next Article
A hybrid inconsistent sustainable chemical industry evaluation method
A smoothing augmented Lagrangian method for nonconvex, nonsmooth constrained programs and its applications to bilevel problems
1. | School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China |
2. | School of Mathematics, Tianjin University, Tianjin, 300072, China |
3. | School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China |
In this paper, we consider a class of nonsmooth and nonconvex optimization problem with an abstract constraint. We propose an augmented Lagrangian method for solving the problem and construct global convergence under a weakly nonsmooth Mangasarian-Fromovitz constraint qualification. We show that any accumulation point of the iteration sequence generated by the algorithm is a feasible point which satisfies the first order necessary optimality condition provided that the penalty parameters are bounded and the upper bound of the augmented Lagrangian functions along the approximated solution sequence exists. Numerical experiments show that the algorithm is efficient for obtaining stationary points of general nonsmooth and nonconvex optimization problems, including the bilevel program which will never satisfy the nonsmooth Mangasarian-Fromovitz constraint qualification.
References:
[1] |
ALGENCAN, http://www.ime.usp.br/$\sim$egbirgin/tango/. Google Scholar |
[2] |
R. Andreani, E. G. Birgin, J. M. Martínez and M. L. Schuverdt,
On Augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim., 18 (2007), 1286-1309.
doi: 10.1137/060654797. |
[3] |
R. Andreani, E. G. Birgin, J. M. Martínez and M. L. Schuverdt,
Augmented Lagrangian methods under the constant positive linear dependence constraint qualification, Math. Program., Ser. B, 111 (2008), 5-32.
doi: 10.1007/s10107-006-0077-1. |
[4] |
R. Andreani, G. Haeser and M. L. Schuverdt,
A relaxed constant positive linear dependence constraint qualification and applications, Math. Program., 135 (2012), 255-273.
doi: 10.1007/s10107-011-0456-0. |
[5] |
J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Academic Publications, Dordrecht, Netherlands, 1998.
doi: 10.1007/978-1-4757-2836-1. |
[6] |
D. P. Bertsekas, Constrained Optimization and Lagrangian Multiplier Methods, Academic Press, New York, 1982. |
[7] |
W. Bian and X. Chen,
Neural network for nonsmooth, nonconvex constrained minimization via smooth approximation, IEEE Trans. Neural Netw. Learn. Syst., 25 (2014), 545-556.
doi: 10.1109/TNNLS.2013.2278427. |
[8] |
E. G. Birgin, D. Fernández and J. M. Martínez,
The boundedness of penalty parameters in an Augmented Lagrangian method with lower level constraints, Optim. Methods Soft., 27 (2012), 1001-1024.
doi: 10.1080/10556788.2011.556634. |
[9] |
J. V. Burke and T. Hoheisel,
Epi-convergent smoothing with applications to convex composite functions, SIAM J. Optim., 23 (2013), 1457-1479.
doi: 10.1137/120889812. |
[10] |
J. V. Burke, T. Hoheisel and C. Kanzow,
Gradient consistency for integral-convolution smoothing functions, Set-Valued Var. Anal., 21 (2013), 359-376.
doi: 10.1007/s11228-013-0235-6. |
[11] |
B. Chen and X. Chen,
A global and local superlinear continuation-smoothing method for $P_0$ and $R_0$ NCP or monotone NCP, SIAM J. Optim., 9 (1999), 624-645.
doi: 10.1137/S1052623497321109. |
[12] |
X. Chen,
Smoothing methods for nonsmooth, nonconvex minimization, Math. Program., 134 (2012), 71-99.
doi: 10.1007/s10107-012-0569-0. |
[13] |
B. Chen and P. T. Harker,
A non-interior-point continuation method for linear complementarity problems, SIAM J. Matrix Anal. Appl., 14 (1993), 1168-1190.
doi: 10.1137/0614081. |
[14] |
X. Chen, L. Guo, Z. Lu and J. J. Ye,
An augmented Lagrangian method for non-Lipschitz nonconvex programming, SIAM J. Numer. Anal., 55 (2017), 168-193.
doi: 10.1137/15M1052834. |
[15] |
C. Chen and O. L. Mangasarian,
A class of smoothing functions for nonlinear and mixed complementarity problems, Math. Program., 71 (1995), 51-70.
doi: 10.1007/BF01592244. |
[16] |
X. Chen, R. S. Womersley and J. J. Ye,
Minimizing the condition number of a gram matrix, SIAM J. Optim., 21 (2011), 127-148.
doi: 10.1137/100786022. |
[17] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983. |
[18] |
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998. |
[19] |
A. R. Conn, N. I. M. Gould and Ph. L. Toint,
A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bound, SIAM J. Numer. Anal., 28 (1991), 545-572.
doi: 10.1137/0728030. |
[20] |
A. R. Conn, N. I. M. Gould and Ph. L. Toint, Trust Region Methods, MPS/SIAM Series on Optimization, SIAM, Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719857. |
[21] |
F. E. Curtis, H. Jiang and D. P. Robinson,
An adaptive augmented Lagrangian method for large-scale constrained optimization, Math. Program., 152 (2015), 201-245.
doi: 10.1007/s10107-014-0784-y. |
[22] |
F. E. Curtis and M. L. Overton,
A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization, SIAM J. Optim., 22 (2012), 474-500.
doi: 10.1137/090780201. |
[23] |
S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, 2002. |
[24] |
S. Dempe,
Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints, Optim., 52 (2003), 333-359.
doi: 10.1080/0233193031000149894. |
[25] |
M. R. Hestenes,
Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), 303-320.
doi: 10.1007/BF00927673. |
[26] |
C. Kanzow,
Some noninterior continuation methods for linear complementarity problems, SIAM J. Matrix Anal. Appl., 17 (1996), 851-868.
doi: 10.1137/S0895479894273134. |
[27] |
LANCELOT, http://www.cse.scitech.ac.uk/nag/lancelot/lancelot.shtml. Google Scholar |
[28] |
G. H. Lin, M. Xu and J. J. Ye,
On solving simple bilevel programs with a nonconvex lower level program, Math. Program., series A, 144 (2014), 277-305.
doi: 10.1007/s10107-013-0633-4. |
[29] |
Z. Lu and Y. Zhang,
An augmented Lagrangian approach for sparse principal component analysis, Math. Program. series A, 135 (2012), 149-193.
doi: 10.1007/s10107-011-0452-4. |
[30] |
J. Mirrlees,
The theory of moral hazard and unobservable behaviour: Part Ⅰ, Rev. Econ. Stud., 66 (1999), 3-22.
doi: 10.1093/acprof:oso/9780198295211.003.0020. |
[31] |
A. Mitsos and P. Barton, A Test Set for Bilevel Programs, Technical Report, Massachusetts Institute of Technology, 2006. Google Scholar |
[32] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Vol. 1: Basic Theory, Vol. 2: Applications, Springer, 2006. |
[33] |
Y. Nesterov,
Smoothing minimization of nonsmooth functions, Math. Program., 103 (2005), 127-152.
doi: 10.1007/s10107-004-0552-5. |
[34] |
J. V. Outrata,
On the numerical solution of a class of Stackelberg problems, Z. Oper. Res., 34 (1990), 255-277.
doi: 10.1007/BF01416737. |
[35] |
M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization(eds. R. Fletcher), 283-298, London and New York, 1969. Academic Press |
[36] |
R. T. Rockafellar, Convex Analysis, Princeton University Press, New Jersey, 1970. |
[37] |
R. T. Rockfellar,
A dual approach to solving nonlinear programming problems by unconstrained optimization, Math. Program., 5 (1973), 354-373.
doi: 10.1007/BF01580138. |
[38] |
R. T. Rockfellar,
Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Con., 12 (1974), 268-285.
doi: 10.1137/0312021. |
[39] |
R. T. Rockfellar,
Monotone operators and the proximal point algorithm, SIAM J. Con. Optim., 14 (1976), 877-898.
doi: 10.1137/0314056. |
[40] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[41] |
K. Shimizu, Y. Ishizuka and J. F. Bard, Nondifferentiable and Two-Level Mathematical Programming, Kluwer Academic Publishers, Boston, 1997.
doi: 10.1007/978-1-4615-6305-1. |
[42] |
S. Smale, Algorithms for solving equations, In: Proceedings of the International Congress of Mathematicians, Berkeley, CA., (1986), 172-195 |
[43] |
L. N. Vicente and P. H. Calamai,
Bilevel and multilevel programming: A bibliography review, J. Global Optim., 5 (1994), 291-306.
doi: 10.1007/BF01096458. |
[44] |
M. Xu and J. J. Ye,
A smoothing augmented Lagrangian method for solving simple bilevel programs, Compu. Optim. App., 59 (2014), 353-377.
doi: 10.1007/s10589-013-9627-7. |
[45] |
M. Xu, J. J. Ye and L. Zhang,
Smoothing sequential quadratic programming method for solving nonconvex, nonsmooth constrained optimization problems, SIAM J. Optim., 25 (2015), 1388-1410.
doi: 10.1137/140971580. |
[46] |
M. Xu, J. J. Ye and L. Zhang,
Smoothing augmented Lagrangian method for nonsmooth constrained optimization problems, J. Glob. Optim., 62 (2015), 675-694.
doi: 10.1007/s10898-014-0242-7. |
[47] |
J. J. Ye and D. L. Zhu,
Optimality conditions for bilevel programming problems, Optim., 33 (1995), 9-27.
doi: 10.1080/02331939508844060. |
[48] |
J. J. Ye and D. L. Zhu,
A note on optimality conditions for bilevel programming problems, Optim., 39 (1997), 361-366.
doi: 10.1080/02331939708844290. |
[49] |
J. J. Ye and D. L. Zhu,
New necessary optimality conditions for bilevel programs by combining MPEC and the value function approach, SIAM J. Optim., 20 (2010), 1885-1905.
doi: 10.1137/080725088. |
show all references
References:
[1] |
ALGENCAN, http://www.ime.usp.br/$\sim$egbirgin/tango/. Google Scholar |
[2] |
R. Andreani, E. G. Birgin, J. M. Martínez and M. L. Schuverdt,
On Augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim., 18 (2007), 1286-1309.
doi: 10.1137/060654797. |
[3] |
R. Andreani, E. G. Birgin, J. M. Martínez and M. L. Schuverdt,
Augmented Lagrangian methods under the constant positive linear dependence constraint qualification, Math. Program., Ser. B, 111 (2008), 5-32.
doi: 10.1007/s10107-006-0077-1. |
[4] |
R. Andreani, G. Haeser and M. L. Schuverdt,
A relaxed constant positive linear dependence constraint qualification and applications, Math. Program., 135 (2012), 255-273.
doi: 10.1007/s10107-011-0456-0. |
[5] |
J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Academic Publications, Dordrecht, Netherlands, 1998.
doi: 10.1007/978-1-4757-2836-1. |
[6] |
D. P. Bertsekas, Constrained Optimization and Lagrangian Multiplier Methods, Academic Press, New York, 1982. |
[7] |
W. Bian and X. Chen,
Neural network for nonsmooth, nonconvex constrained minimization via smooth approximation, IEEE Trans. Neural Netw. Learn. Syst., 25 (2014), 545-556.
doi: 10.1109/TNNLS.2013.2278427. |
[8] |
E. G. Birgin, D. Fernández and J. M. Martínez,
The boundedness of penalty parameters in an Augmented Lagrangian method with lower level constraints, Optim. Methods Soft., 27 (2012), 1001-1024.
doi: 10.1080/10556788.2011.556634. |
[9] |
J. V. Burke and T. Hoheisel,
Epi-convergent smoothing with applications to convex composite functions, SIAM J. Optim., 23 (2013), 1457-1479.
doi: 10.1137/120889812. |
[10] |
J. V. Burke, T. Hoheisel and C. Kanzow,
Gradient consistency for integral-convolution smoothing functions, Set-Valued Var. Anal., 21 (2013), 359-376.
doi: 10.1007/s11228-013-0235-6. |
[11] |
B. Chen and X. Chen,
A global and local superlinear continuation-smoothing method for $P_0$ and $R_0$ NCP or monotone NCP, SIAM J. Optim., 9 (1999), 624-645.
doi: 10.1137/S1052623497321109. |
[12] |
X. Chen,
Smoothing methods for nonsmooth, nonconvex minimization, Math. Program., 134 (2012), 71-99.
doi: 10.1007/s10107-012-0569-0. |
[13] |
B. Chen and P. T. Harker,
A non-interior-point continuation method for linear complementarity problems, SIAM J. Matrix Anal. Appl., 14 (1993), 1168-1190.
doi: 10.1137/0614081. |
[14] |
X. Chen, L. Guo, Z. Lu and J. J. Ye,
An augmented Lagrangian method for non-Lipschitz nonconvex programming, SIAM J. Numer. Anal., 55 (2017), 168-193.
doi: 10.1137/15M1052834. |
[15] |
C. Chen and O. L. Mangasarian,
A class of smoothing functions for nonlinear and mixed complementarity problems, Math. Program., 71 (1995), 51-70.
doi: 10.1007/BF01592244. |
[16] |
X. Chen, R. S. Womersley and J. J. Ye,
Minimizing the condition number of a gram matrix, SIAM J. Optim., 21 (2011), 127-148.
doi: 10.1137/100786022. |
[17] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983. |
[18] |
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998. |
[19] |
A. R. Conn, N. I. M. Gould and Ph. L. Toint,
A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bound, SIAM J. Numer. Anal., 28 (1991), 545-572.
doi: 10.1137/0728030. |
[20] |
A. R. Conn, N. I. M. Gould and Ph. L. Toint, Trust Region Methods, MPS/SIAM Series on Optimization, SIAM, Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719857. |
[21] |
F. E. Curtis, H. Jiang and D. P. Robinson,
An adaptive augmented Lagrangian method for large-scale constrained optimization, Math. Program., 152 (2015), 201-245.
doi: 10.1007/s10107-014-0784-y. |
[22] |
F. E. Curtis and M. L. Overton,
A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization, SIAM J. Optim., 22 (2012), 474-500.
doi: 10.1137/090780201. |
[23] |
S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, 2002. |
[24] |
S. Dempe,
Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints, Optim., 52 (2003), 333-359.
doi: 10.1080/0233193031000149894. |
[25] |
M. R. Hestenes,
Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), 303-320.
doi: 10.1007/BF00927673. |
[26] |
C. Kanzow,
Some noninterior continuation methods for linear complementarity problems, SIAM J. Matrix Anal. Appl., 17 (1996), 851-868.
doi: 10.1137/S0895479894273134. |
[27] |
LANCELOT, http://www.cse.scitech.ac.uk/nag/lancelot/lancelot.shtml. Google Scholar |
[28] |
G. H. Lin, M. Xu and J. J. Ye,
On solving simple bilevel programs with a nonconvex lower level program, Math. Program., series A, 144 (2014), 277-305.
doi: 10.1007/s10107-013-0633-4. |
[29] |
Z. Lu and Y. Zhang,
An augmented Lagrangian approach for sparse principal component analysis, Math. Program. series A, 135 (2012), 149-193.
doi: 10.1007/s10107-011-0452-4. |
[30] |
J. Mirrlees,
The theory of moral hazard and unobservable behaviour: Part Ⅰ, Rev. Econ. Stud., 66 (1999), 3-22.
doi: 10.1093/acprof:oso/9780198295211.003.0020. |
[31] |
A. Mitsos and P. Barton, A Test Set for Bilevel Programs, Technical Report, Massachusetts Institute of Technology, 2006. Google Scholar |
[32] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Vol. 1: Basic Theory, Vol. 2: Applications, Springer, 2006. |
[33] |
Y. Nesterov,
Smoothing minimization of nonsmooth functions, Math. Program., 103 (2005), 127-152.
doi: 10.1007/s10107-004-0552-5. |
[34] |
J. V. Outrata,
On the numerical solution of a class of Stackelberg problems, Z. Oper. Res., 34 (1990), 255-277.
doi: 10.1007/BF01416737. |
[35] |
M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization(eds. R. Fletcher), 283-298, London and New York, 1969. Academic Press |
[36] |
R. T. Rockafellar, Convex Analysis, Princeton University Press, New Jersey, 1970. |
[37] |
R. T. Rockfellar,
A dual approach to solving nonlinear programming problems by unconstrained optimization, Math. Program., 5 (1973), 354-373.
doi: 10.1007/BF01580138. |
[38] |
R. T. Rockfellar,
Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Con., 12 (1974), 268-285.
doi: 10.1137/0312021. |
[39] |
R. T. Rockfellar,
Monotone operators and the proximal point algorithm, SIAM J. Con. Optim., 14 (1976), 877-898.
doi: 10.1137/0314056. |
[40] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[41] |
K. Shimizu, Y. Ishizuka and J. F. Bard, Nondifferentiable and Two-Level Mathematical Programming, Kluwer Academic Publishers, Boston, 1997.
doi: 10.1007/978-1-4615-6305-1. |
[42] |
S. Smale, Algorithms for solving equations, In: Proceedings of the International Congress of Mathematicians, Berkeley, CA., (1986), 172-195 |
[43] |
L. N. Vicente and P. H. Calamai,
Bilevel and multilevel programming: A bibliography review, J. Global Optim., 5 (1994), 291-306.
doi: 10.1007/BF01096458. |
[44] |
M. Xu and J. J. Ye,
A smoothing augmented Lagrangian method for solving simple bilevel programs, Compu. Optim. App., 59 (2014), 353-377.
doi: 10.1007/s10589-013-9627-7. |
[45] |
M. Xu, J. J. Ye and L. Zhang,
Smoothing sequential quadratic programming method for solving nonconvex, nonsmooth constrained optimization problems, SIAM J. Optim., 25 (2015), 1388-1410.
doi: 10.1137/140971580. |
[46] |
M. Xu, J. J. Ye and L. Zhang,
Smoothing augmented Lagrangian method for nonsmooth constrained optimization problems, J. Glob. Optim., 62 (2015), 675-694.
doi: 10.1007/s10898-014-0242-7. |
[47] |
J. J. Ye and D. L. Zhu,
Optimality conditions for bilevel programming problems, Optim., 33 (1995), 9-27.
doi: 10.1080/02331939508844060. |
[48] |
J. J. Ye and D. L. Zhu,
A note on optimality conditions for bilevel programming problems, Optim., 39 (1997), 361-366.
doi: 10.1080/02331939708844290. |
[49] |
J. J. Ye and D. L. Zhu,
New necessary optimality conditions for bilevel programs by combining MPEC and the value function approach, SIAM J. Optim., 20 (2010), 1885-1905.
doi: 10.1137/080725088. |
(x*; y*) | d(x*; y*) | |
Algorithm 3.1 | (1, 0.957504) | 5.73e-006 |
SQP algorithm | (1.000002, 0.957598) | 9.79e-005 |
SAL algorithm | (1.000905, 0.957459) | 9.06e-004 |
(x*; y*) | d(x*; y*) | |
Algorithm 3.1 | (1, 0.957504) | 5.73e-006 |
SQP algorithm | (1.000002, 0.957598) | 9.79e-005 |
SAL algorithm | (1.000905, 0.957459) | 9.06e-004 |
(x*; y*) | d(x*; y*) | |
Algorithm 3.1 | (0.500003, 0.500003) | 4.08e-006 |
SQP algorithm | (0.499996, 0.499996) | 5.85e-006 |
SAL algorithm | (0.500000, 0.499995) | 2.89e-005 |
(x*; y*) | d(x*; y*) | |
Algorithm 3.1 | (0.500003, 0.500003) | 4.08e-006 |
SQP algorithm | (0.499996, 0.499996) | 5.85e-006 |
SAL algorithm | (0.500000, 0.499995) | 2.89e-005 |
[1] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[2] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[3] |
Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104 |
[4] |
Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983 |
[5] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[6] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[7] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[8] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[9] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[10] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[11] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[12] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[13] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[14] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[15] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[16] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[17] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[18] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[19] |
Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263 |
[20] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]