
-
Previous Article
An inventory model with imperfect item, inspection errors, preventive maintenance and partial backlogging in uncertainty environment
- JIMO Home
- This Issue
-
Next Article
Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization
Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers
1. | Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore, Paschim Medinipur, West Bengal 721102, India |
2. | Department of Mathematics, Calcutta Institute of Technology, Uluberia, Howrah, West Bengal 711316, India |
3. | Department of Mathematics, Mahishadal Raj College, Mahishadal, Purba Medinipur, West Bengal 721628, India |
In the recently published paper [Gour Chandra Mahata and Sujit Kumar De, Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit-risk customers, International Journal of Management Science and Engineering Management, 2017, DOI:10.1080/17509653.2015.1109482], a supplier-retailer supply chain model of a deteriorating item with maximum lifetime and partial trade credit to credit risk customers is studied. In their study, unfortunately the amount of the payable bank interest due to the deteriorated units is omitted in the retailer's profit function for making the marketing decision. Some other unrealistic studies are also found in the numerical section of the paper. In this study those non-trivial flaws are identified and technically corrected. After correction, the theoretical existence of the optimal solutions of different scenarios are established and the solutions are derived using a soft computing technique.
References:
[1] |
S. P. Aggarwal and C. K. Jaggi,
Ordering policies of deteriorating items under permissible delay in payments, The Journal of the Operational Research Society, 46 (1995), 658-662.
doi: 10.2307/2584538. |
[2] |
K. Annaduari and R. Uthayakumar,
Analysis of partial trade credit financing in a supply chain by EOQ-based model for decaying items with shortage, The International Journal of Advanced Manufacturing Technology, 61 (2012), 1139-1159.
doi: 10.1007/s00170-011-3765-9. |
[3] |
K. Annaduari and R. Uthayakumar,
Two-echelon inventory model for deteriorating items with credit period dependent demand including shortages under trade credit, Optimization Letters, 7 (2013), 1227-1249.
doi: 10.1007/s11590-012-0499-z. |
[4] |
M. Bakker, J. Riezebos and R. H. Teunter,
Review of inventory systems with deterioration since 2001, European Journal of Operational Research, 221 (2012), 275-284.
doi: 10.1016/j.ejor.2012.03.004. |
[5] |
C. T. Chang, L. Y. Ouyang and J. T. Teng,
An EOQ model for deteriorating items under supplier credits linked to ordering quantity, Applied Mathematical Modelling, 27 (2003), 983-996.
doi: 10.1016/S0307-904X(03)00131-8. |
[6] |
K. J. Chung and T. S. Huang,
The optimal retailer's ordering policies for deteriorating items with limited storage capacity under trade credit financing, International Journal of Production Economics, 106 (2007), 127-145.
doi: 10.1016/j.ijpe.2006.05.008. |
[7] |
R. P. Covert and G. C. Philip,
An EOQ model for items with Weibull distribution deterioration, AIIE Transitions, 5 (1973), 323-326.
doi: 10.1080/05695557308974918. |
[8] |
U. Dave and L. K. Patel,
(T, $S_{i}$) policy inventory model for deteriorating items with time proportional demand, Journal of the Operational Research Society, 32 (1981), 137-142.
doi: 10.1057/jors.1981.27. |
[9] |
A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Wiley and Sons Ltd., 2005. Google Scholar |
[10] |
P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system, Journal of Industrial Engineering, 21 (1963), 449-460. Google Scholar |
[11] |
A. Goswami and K. S. Chaudhuri,
An EOQ model for deteriorating items with shortages and a linear trend in demand, The Journal of the Operational Research Society, 42 (1991), 1105-1110.
doi: 10.2307/2582957. |
[12] |
S. K. Goyal,
Economic order quantity under conditions of permissible delay in payment, The Journal of the Operational Research Society, 36 (1985), 335-338.
doi: 10.2307/2582421. |
[13] |
P. Guchhait, M. K. Maiti and M. Maiti,
Inventory model of a deteriorating item with price and credit linked fuzzy demand : A fuzzy differential equation approach, OPSEARCH, 51 (2014), 321-353.
doi: 10.1007/s12597-013-0153-2. |
[14] |
P. Guchhait, M. K. Maiti and M. Maiti,
Two storage inventory model of a deteriorating item with variable demand under partial credit period, Applied Soft Computing, 13 (2013), 428-448.
doi: 10.1016/j.asoc.2012.07.028. |
[15] |
M. A. Hariga,
Optimal EOQ models for deteriorating items with time-varying demand, The Journal of the Operation Research Society, 47 (1996), 1228-1246.
doi: 10.2307/3010036. |
[16] |
C. K. Huang,
An integrated inventory model under conditions of order processing cost reduction and permissible delay in payments, Applied Mathematical Modelling, 34 (2010), 1352-1359.
doi: 10.1016/j.apm.2009.08.015. |
[17] |
D. Huang, L. Q. Ouyang and H. Zhou,
Note on: Managing multi-echelon multi-item channels with trade allowances under credit period, International Journal Production Economics, 138 (2012), 117-124.
doi: 10.1016/j.ijpe.2012.03.008. |
[18] |
Y. F. Huang,
Economic order quantity under conditionally permissible delay in payments, European Journal of Operational Research, 176 (2007), 911-924.
doi: 10.1016/j.ejor.2005.08.017. |
[19] |
Y. F. Huang,
Optimal retailer's ordering policies in the EOQ model under trade credit financing, Journal of the Operational Research Society, 54 (2003), 1011-1015.
doi: 10.1057/palgrave.jors.2601588. |
[20] |
G. C. Mahata,
An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain, Expert Systems with Applications, 39 (2012), 3537-3550.
doi: 10.1016/j.eswa.2011.09.044. |
[21] |
G. C. Mahata,
Retailer's optimal credit period and cycle time in a supply chain for deteriorating items with up-stream and down-stream trade credits, Journal of Industrial Engineering International, 11 (2015), 353-366.
doi: 10.1007/s40092-015-0106-x. |
[22] |
G. C. Mahata and S. K. De,
Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit-risk customers, International Journal of Management Science and Engineering Management, 12 (2017), 21-32.
doi: 10.1080/17509653.2015.1109482. |
[23] |
P. Mahata and G. C. Mahata,
Economic production quantity model with trade credit financing and price-discount offer for non-decreasing time varying demand pattern, International Journal of Procurement Management, 7 (2014), 563-581.
doi: 10.1504/IJPM.2014.064619. |
[24] |
M. K. Maiti,
A fuzzy genetic algorithm with varying population size to solve an inventory model with credit-linked promotional demand in an imprecise planning horizon, European Journal of Operational Research, 213 (2011), 96-106.
doi: 10.1016/j.ejor.2011.02.014. |
[25] |
J. Min, Y. W. Zhou and J. Zhao,
An inventory model for deteriorating items under stock-dependent demand and two-level trade credit, Applied Mathematical Modelling, 34 (2010), 3273-3285.
doi: 10.1016/j.apm.2010.02.019. |
[26] |
L. Y. Ouyang, J. T. Teng, S. K. Goyal and C. T. Yang,
An economic order quantity model for deteriorating items with partially permissible delay in payments to order quantity, European Journal of Operational Research, 194 (2009), 418-431.
doi: 10.1016/j.ejor.2007.12.018. |
[27] |
G. C. Philip,
A generalized EOQ model for items with Weibull distribution deterioration, AIIE Transactions, 6 (1974), 159-162.
doi: 10.1080/05695557408974948. |
[28] |
P. Pramanik, M. K. Maiti and M. Maiti,
A supply chain with variable demand under three level trade credit policy, Computers & Industrial Engineering, 106 (2017), 205-221.
doi: 10.1016/j.cie.2017.02.007. |
[29] |
P. Pramanik, M. K. Maiti and M. Maiti,
An appropriate business strategy for a sale item, OPSEARCH, 55 (2018), 85-106.
doi: 10.1007/s12597-017-0310-0. |
[30] |
P. Pramanik, M. K. Maiti and M. Maiti,
Three level partial trade credit with promotional cost sharing, Applied Soft Computing, 58 (2017), 553-575.
doi: 10.1016/j.asoc.2017.04.013. |
[31] |
B. Sarkar and S. Sarkar,
Variable deterioration and demand-An inventory model, Economic Modelling, 31 (2013), 548-556.
doi: 10.1016/j.econmod.2012.11.045. |
[32] |
D. Seifert, R. W. Seifert and M. Protopappa-Sieke,
A review of trade credit literature: opportunity for research in operations, European Journal of Operational Research, 231 (2013), 245-256.
doi: 10.1016/j.ejor.2013.03.016. |
[33] |
B. K. Sett, S. Sarkar, B. Sarkar and W. Y. Yun,
Optimal replenishment policy with variable deterioration for fixed-lifetime products, Scientia Iranica, 23 (2016), 2318-2329.
doi: 10.24200/sci.2016.3959. |
[34] |
T. Singh and H. Pattanayak,
An EOQ model for deteriorating items with linear demand, variable deterioration and partial backlogging, Journal of Service Science and Management, 6 (2013), 186-190.
doi: 10.4236/jssm.2013.62019. |
[35] |
S. Tayal, S. R. Singh and R. Sharma, Multi Item Inventory Model for Deteriorating Items with Expiration Date and Allowable Shortages, Indian Journal of Science and Technology, 7 (2014), 463-471. Google Scholar |
[36] |
J. T. Teng,
Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad customers, International Journal of Production Economics, 119 (2009), 415-423.
doi: 10.1016/j.ijpe.2009.04.004. |
[37] |
J. T. Teng, H. J. Chang, C. Y. Dye and C. H. Hung,
An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging, Operation Research Letters, 30 (2002), 387-393.
doi: 10.1016/S0167-6377(02)00150-5. |
[38] |
J. T. Teng, M. S. Chern, H. L. Yang and Y. J. Wang,
Deterministic lot-size inventory models with shortages and deterioration for fluctuating demand, Operation Research Letters, 24 (1999), 65-72.
doi: 10.1016/S0167-6377(98)00042-X. |
[39] |
J. T. Teng and S. K. Goyal,
Optimal ordering policies for a retailer in a supply chain with up-stream and down-stream trade credits, Journal of the Operational Research Society, 58 (2007), 1252-1255.
doi: 10.1057/palgrave.jors.2602404. |
[40] |
Y. C. Tsao,
Managing multi-echelon multi-item channels with trade allowances under credit period, International Journal Production Economics, 127 (2010), 226-237.
doi: 10.1016/j.ijpe.2009.08.010. |
show all references
References:
[1] |
S. P. Aggarwal and C. K. Jaggi,
Ordering policies of deteriorating items under permissible delay in payments, The Journal of the Operational Research Society, 46 (1995), 658-662.
doi: 10.2307/2584538. |
[2] |
K. Annaduari and R. Uthayakumar,
Analysis of partial trade credit financing in a supply chain by EOQ-based model for decaying items with shortage, The International Journal of Advanced Manufacturing Technology, 61 (2012), 1139-1159.
doi: 10.1007/s00170-011-3765-9. |
[3] |
K. Annaduari and R. Uthayakumar,
Two-echelon inventory model for deteriorating items with credit period dependent demand including shortages under trade credit, Optimization Letters, 7 (2013), 1227-1249.
doi: 10.1007/s11590-012-0499-z. |
[4] |
M. Bakker, J. Riezebos and R. H. Teunter,
Review of inventory systems with deterioration since 2001, European Journal of Operational Research, 221 (2012), 275-284.
doi: 10.1016/j.ejor.2012.03.004. |
[5] |
C. T. Chang, L. Y. Ouyang and J. T. Teng,
An EOQ model for deteriorating items under supplier credits linked to ordering quantity, Applied Mathematical Modelling, 27 (2003), 983-996.
doi: 10.1016/S0307-904X(03)00131-8. |
[6] |
K. J. Chung and T. S. Huang,
The optimal retailer's ordering policies for deteriorating items with limited storage capacity under trade credit financing, International Journal of Production Economics, 106 (2007), 127-145.
doi: 10.1016/j.ijpe.2006.05.008. |
[7] |
R. P. Covert and G. C. Philip,
An EOQ model for items with Weibull distribution deterioration, AIIE Transitions, 5 (1973), 323-326.
doi: 10.1080/05695557308974918. |
[8] |
U. Dave and L. K. Patel,
(T, $S_{i}$) policy inventory model for deteriorating items with time proportional demand, Journal of the Operational Research Society, 32 (1981), 137-142.
doi: 10.1057/jors.1981.27. |
[9] |
A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Wiley and Sons Ltd., 2005. Google Scholar |
[10] |
P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system, Journal of Industrial Engineering, 21 (1963), 449-460. Google Scholar |
[11] |
A. Goswami and K. S. Chaudhuri,
An EOQ model for deteriorating items with shortages and a linear trend in demand, The Journal of the Operational Research Society, 42 (1991), 1105-1110.
doi: 10.2307/2582957. |
[12] |
S. K. Goyal,
Economic order quantity under conditions of permissible delay in payment, The Journal of the Operational Research Society, 36 (1985), 335-338.
doi: 10.2307/2582421. |
[13] |
P. Guchhait, M. K. Maiti and M. Maiti,
Inventory model of a deteriorating item with price and credit linked fuzzy demand : A fuzzy differential equation approach, OPSEARCH, 51 (2014), 321-353.
doi: 10.1007/s12597-013-0153-2. |
[14] |
P. Guchhait, M. K. Maiti and M. Maiti,
Two storage inventory model of a deteriorating item with variable demand under partial credit period, Applied Soft Computing, 13 (2013), 428-448.
doi: 10.1016/j.asoc.2012.07.028. |
[15] |
M. A. Hariga,
Optimal EOQ models for deteriorating items with time-varying demand, The Journal of the Operation Research Society, 47 (1996), 1228-1246.
doi: 10.2307/3010036. |
[16] |
C. K. Huang,
An integrated inventory model under conditions of order processing cost reduction and permissible delay in payments, Applied Mathematical Modelling, 34 (2010), 1352-1359.
doi: 10.1016/j.apm.2009.08.015. |
[17] |
D. Huang, L. Q. Ouyang and H. Zhou,
Note on: Managing multi-echelon multi-item channels with trade allowances under credit period, International Journal Production Economics, 138 (2012), 117-124.
doi: 10.1016/j.ijpe.2012.03.008. |
[18] |
Y. F. Huang,
Economic order quantity under conditionally permissible delay in payments, European Journal of Operational Research, 176 (2007), 911-924.
doi: 10.1016/j.ejor.2005.08.017. |
[19] |
Y. F. Huang,
Optimal retailer's ordering policies in the EOQ model under trade credit financing, Journal of the Operational Research Society, 54 (2003), 1011-1015.
doi: 10.1057/palgrave.jors.2601588. |
[20] |
G. C. Mahata,
An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain, Expert Systems with Applications, 39 (2012), 3537-3550.
doi: 10.1016/j.eswa.2011.09.044. |
[21] |
G. C. Mahata,
Retailer's optimal credit period and cycle time in a supply chain for deteriorating items with up-stream and down-stream trade credits, Journal of Industrial Engineering International, 11 (2015), 353-366.
doi: 10.1007/s40092-015-0106-x. |
[22] |
G. C. Mahata and S. K. De,
Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit-risk customers, International Journal of Management Science and Engineering Management, 12 (2017), 21-32.
doi: 10.1080/17509653.2015.1109482. |
[23] |
P. Mahata and G. C. Mahata,
Economic production quantity model with trade credit financing and price-discount offer for non-decreasing time varying demand pattern, International Journal of Procurement Management, 7 (2014), 563-581.
doi: 10.1504/IJPM.2014.064619. |
[24] |
M. K. Maiti,
A fuzzy genetic algorithm with varying population size to solve an inventory model with credit-linked promotional demand in an imprecise planning horizon, European Journal of Operational Research, 213 (2011), 96-106.
doi: 10.1016/j.ejor.2011.02.014. |
[25] |
J. Min, Y. W. Zhou and J. Zhao,
An inventory model for deteriorating items under stock-dependent demand and two-level trade credit, Applied Mathematical Modelling, 34 (2010), 3273-3285.
doi: 10.1016/j.apm.2010.02.019. |
[26] |
L. Y. Ouyang, J. T. Teng, S. K. Goyal and C. T. Yang,
An economic order quantity model for deteriorating items with partially permissible delay in payments to order quantity, European Journal of Operational Research, 194 (2009), 418-431.
doi: 10.1016/j.ejor.2007.12.018. |
[27] |
G. C. Philip,
A generalized EOQ model for items with Weibull distribution deterioration, AIIE Transactions, 6 (1974), 159-162.
doi: 10.1080/05695557408974948. |
[28] |
P. Pramanik, M. K. Maiti and M. Maiti,
A supply chain with variable demand under three level trade credit policy, Computers & Industrial Engineering, 106 (2017), 205-221.
doi: 10.1016/j.cie.2017.02.007. |
[29] |
P. Pramanik, M. K. Maiti and M. Maiti,
An appropriate business strategy for a sale item, OPSEARCH, 55 (2018), 85-106.
doi: 10.1007/s12597-017-0310-0. |
[30] |
P. Pramanik, M. K. Maiti and M. Maiti,
Three level partial trade credit with promotional cost sharing, Applied Soft Computing, 58 (2017), 553-575.
doi: 10.1016/j.asoc.2017.04.013. |
[31] |
B. Sarkar and S. Sarkar,
Variable deterioration and demand-An inventory model, Economic Modelling, 31 (2013), 548-556.
doi: 10.1016/j.econmod.2012.11.045. |
[32] |
D. Seifert, R. W. Seifert and M. Protopappa-Sieke,
A review of trade credit literature: opportunity for research in operations, European Journal of Operational Research, 231 (2013), 245-256.
doi: 10.1016/j.ejor.2013.03.016. |
[33] |
B. K. Sett, S. Sarkar, B. Sarkar and W. Y. Yun,
Optimal replenishment policy with variable deterioration for fixed-lifetime products, Scientia Iranica, 23 (2016), 2318-2329.
doi: 10.24200/sci.2016.3959. |
[34] |
T. Singh and H. Pattanayak,
An EOQ model for deteriorating items with linear demand, variable deterioration and partial backlogging, Journal of Service Science and Management, 6 (2013), 186-190.
doi: 10.4236/jssm.2013.62019. |
[35] |
S. Tayal, S. R. Singh and R. Sharma, Multi Item Inventory Model for Deteriorating Items with Expiration Date and Allowable Shortages, Indian Journal of Science and Technology, 7 (2014), 463-471. Google Scholar |
[36] |
J. T. Teng,
Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad customers, International Journal of Production Economics, 119 (2009), 415-423.
doi: 10.1016/j.ijpe.2009.04.004. |
[37] |
J. T. Teng, H. J. Chang, C. Y. Dye and C. H. Hung,
An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging, Operation Research Letters, 30 (2002), 387-393.
doi: 10.1016/S0167-6377(02)00150-5. |
[38] |
J. T. Teng, M. S. Chern, H. L. Yang and Y. J. Wang,
Deterministic lot-size inventory models with shortages and deterioration for fluctuating demand, Operation Research Letters, 24 (1999), 65-72.
doi: 10.1016/S0167-6377(98)00042-X. |
[39] |
J. T. Teng and S. K. Goyal,
Optimal ordering policies for a retailer in a supply chain with up-stream and down-stream trade credits, Journal of the Operational Research Society, 58 (2007), 1252-1255.
doi: 10.1057/palgrave.jors.2602404. |
[40] |
Y. C. Tsao,
Managing multi-echelon multi-item channels with trade allowances under credit period, International Journal Production Economics, 127 (2010), 226-237.
doi: 10.1016/j.ijpe.2009.08.010. |















Article | Deteriorating item | Level of trade credit | Pattern of trade credit | Deterioration rate | Item(s) has expiration time | Interest paid for deteriorated units |
[8,11,15,37,38] | NA | Constant | NA | |||
[35] | NA | Constant | NA | |||
[1] | Supplier-Retailer | Full credit | Constant | |||
[2,14,26] | Supplier-Retailer | Ordered quantity based full/ partial credit | Constant | |||
[3,6,13,21,25] | Supplier-Retailer | Full credit | Constant | |||
Retailer-Customers | Full credit | |||||
[20] | Supplier-Retailer | Full credit | Constant | |||
Retailer-Customers | Partial credit | |||||
[7,27,34] | NA | Time dependent | NA | |||
[5] | Supplier-Retailer | Order quantity based full credit | Time dependent | |||
[22] | Supplier-Retailer | Full credit | Time dependent | |||
Retailer-Customers | Partial credit | |||||
This Paper | Supplier-Retailer | Full credit | Time dependent | |||
Retailer-Customers | Partial credit | |||||
NA stands for ‘Not Applicable’. |
Article | Deteriorating item | Level of trade credit | Pattern of trade credit | Deterioration rate | Item(s) has expiration time | Interest paid for deteriorated units |
[8,11,15,37,38] | NA | Constant | NA | |||
[35] | NA | Constant | NA | |||
[1] | Supplier-Retailer | Full credit | Constant | |||
[2,14,26] | Supplier-Retailer | Ordered quantity based full/ partial credit | Constant | |||
[3,6,13,21,25] | Supplier-Retailer | Full credit | Constant | |||
Retailer-Customers | Full credit | |||||
[20] | Supplier-Retailer | Full credit | Constant | |||
Retailer-Customers | Partial credit | |||||
[7,27,34] | NA | Time dependent | NA | |||
[5] | Supplier-Retailer | Order quantity based full credit | Time dependent | |||
[22] | Supplier-Retailer | Full credit | Time dependent | |||
Retailer-Customers | Partial credit | |||||
This Paper | Supplier-Retailer | Full credit | Time dependent | |||
Retailer-Customers | Partial credit | |||||
NA stands for ‘Not Applicable’. |
Example | Appropriate for | |||
5.1 | Situation 1.1 | 319.396 | ||
5.2 | Situation 1.2 | 291.159 | ||
5.3 | Situation 1.3 | 296.892 | ||
5.4 | Situation 2.1 | 273.311 | ||
5.5 | Situation 2.2 | 256.299 |
Example | Appropriate for | |||
5.1 | Situation 1.1 | 319.396 | ||
5.2 | Situation 1.2 | 291.159 | ||
5.3 | Situation 1.3 | 296.892 | ||
5.4 | Situation 2.1 | 273.311 | ||
5.5 | Situation 2.2 | 256.299 |
Parameter | ||||
2000 | 0.1404 | 291.159 | 8643.00 | |
D | 2500 | 0.1259 | 325.220 | 10991.49 |
3000 | 0.1151 | 355.645 | 13355.68 | |
0.16 | 0.1404 | 291.159 | 8643.00 | |
M | 0.20 | 0.1395 | 289.318 | 8664.18 |
0.25 | 0.1392 | 288.595 | 8694.01 | |
50 | 0.1000 | 205.167 | 9058.72 | |
A | 100 | 0.1404 | 291.159 | 8643.00 |
200 | 0.1958 | 412.145 | 8048.82 | |
1 | 0.1404 | 291.159 | 8643.00 | |
m | 2 | 0.1569 | 322.272 | 8780.27 |
3 | 0.1670 | 341.100 | 8853.89 | |
0.02 | 0.1409 | 292.159 | 8637.78 | |
0.03 | 0.1404 | 291.159 | 8643.00 | |
0.04 | 0.1398 | 289.933 | 8648.24 | |
0.05 | 0.1404 | 291.159 | 8643.00 | |
0.10 | 0.1402 | 290.779 | 8645.21 | |
0.20 | 0.1403 | 290.972 | 8649.619 | |
0.04 | 0.1396 | 289.443 | 8662.98 | |
N | 0.08 | 0.1404 | 291.159 | 8643.00 |
0.12 | 0.1407 | 291.855 | 8626.29 | |
1 | 0.1894 | 398.066 | 16983.74 | |
c | 3 | 0.1595 | 332.370 | 12795.03 |
5 | 0.1404 | 291.159 | 8643.00 | |
1 | 0.1569 | 326.853 | 8795.10 | |
h | 2 | 0.1404 | 291.159 | 8643.00 |
4 | 0.1189 | 244.171 | 8380.12 | |
0.02 | 0.1410 | 292.351 | 8644.47 | |
0.03 | 0.1404 | 291.159 | 8643.00 | |
0.04 | 0.1400 | 290.248 | 8641.556 | |
10 | 0.1404 | 291.159 | 8643.00 | |
s | 15 | 0.1396 | 289.442 | 18650.87 |
20 | 0.1390 | 288.053 | 28658.77 |
Parameter | ||||
2000 | 0.1404 | 291.159 | 8643.00 | |
D | 2500 | 0.1259 | 325.220 | 10991.49 |
3000 | 0.1151 | 355.645 | 13355.68 | |
0.16 | 0.1404 | 291.159 | 8643.00 | |
M | 0.20 | 0.1395 | 289.318 | 8664.18 |
0.25 | 0.1392 | 288.595 | 8694.01 | |
50 | 0.1000 | 205.167 | 9058.72 | |
A | 100 | 0.1404 | 291.159 | 8643.00 |
200 | 0.1958 | 412.145 | 8048.82 | |
1 | 0.1404 | 291.159 | 8643.00 | |
m | 2 | 0.1569 | 322.272 | 8780.27 |
3 | 0.1670 | 341.100 | 8853.89 | |
0.02 | 0.1409 | 292.159 | 8637.78 | |
0.03 | 0.1404 | 291.159 | 8643.00 | |
0.04 | 0.1398 | 289.933 | 8648.24 | |
0.05 | 0.1404 | 291.159 | 8643.00 | |
0.10 | 0.1402 | 290.779 | 8645.21 | |
0.20 | 0.1403 | 290.972 | 8649.619 | |
0.04 | 0.1396 | 289.443 | 8662.98 | |
N | 0.08 | 0.1404 | 291.159 | 8643.00 |
0.12 | 0.1407 | 291.855 | 8626.29 | |
1 | 0.1894 | 398.066 | 16983.74 | |
c | 3 | 0.1595 | 332.370 | 12795.03 |
5 | 0.1404 | 291.159 | 8643.00 | |
1 | 0.1569 | 326.853 | 8795.10 | |
h | 2 | 0.1404 | 291.159 | 8643.00 |
4 | 0.1189 | 244.171 | 8380.12 | |
0.02 | 0.1410 | 292.351 | 8644.47 | |
0.03 | 0.1404 | 291.159 | 8643.00 | |
0.04 | 0.1400 | 290.248 | 8641.556 | |
10 | 0.1404 | 291.159 | 8643.00 | |
s | 15 | 0.1396 | 289.442 | 18650.87 |
20 | 0.1390 | 288.053 | 28658.77 |
[1] |
Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169 |
[2] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[3] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[4] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[5] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[6] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[7] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[8] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[9] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[10] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[11] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[12] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[13] |
Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209 |
[14] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[15] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[16] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[17] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[18] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[19] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[20] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]