July  2019, 15(3): 1387-1397. doi: 10.3934/jimo.2018100

Perturbation analysis of a class of conic programming problems under Jacobian uniqueness conditions

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

* Corresponding author: Z. R. Yin

Received  September 2017 Revised  March 2018 Published  July 2018

Fund Project: The second author is supported by the National Natural Science Foundation of China under projects No. 11571059, No. 11731013 and No. 91330206.

We consider the stability of a class of parameterized conic programming problems which are more general than $C^2$-smooth parameterization. We show that when the Karush-Kuhn-Tucker (KKT) condition, the constraint nondegeneracy condition, the strict complementary condition and the second order sufficient condition (named as Jacobian uniqueness conditions here) are satisfied at a feasible point of the original problem, the Jacobian uniqueness conditions of the perturbed problem also hold at some feasible point.

Citation: Ziran Yin, Liwei Zhang. Perturbation analysis of a class of conic programming problems under Jacobian uniqueness conditions. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1387-1397. doi: 10.3934/jimo.2018100
References:
[1]

C. Berge, Topological Spaces, Macmillan, New York, 1963. Google Scholar

[2]

J. F. BonnansR. Cominetti and A. Shapiro, Sensitivity analysis of optimization problems under second order regular constraints, Mathematics of Operations Research, 23 (1998), 806-831.  doi: 10.1287/moor.23.4.806.  Google Scholar

[3]

J. F. BonnansR. Cominetti and A. Shapiro, Second order optimality conditions based on parabolic second order tangent sets, SIAM Journal on Optimization, 9 (1999), 466-492.  doi: 10.1137/S1052623496306760.  Google Scholar

[4]

J. F. Bonnans and H. Ramírez C., Perturbation analysis of second order cone programming problems, Mathematical Programming, 104 (2005), 205-227.  doi: 10.1007/s10107-005-0613-4.  Google Scholar

[5]

J. F. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour, SIAM Review, 40 (1998), 228-264.  doi: 10.1137/S0036144596302644.  Google Scholar

[6]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000. doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[7]

J. F. Bonnans and A. Sulem, Pseudopower expansion of solutions of generalized equations and constrained optimization problems, Mathematical Programming, 70 (1995), 123-148.  doi: 10.1007/BF01585932.  Google Scholar

[8]

C. Ding, An Introduction to a Class of Matrix Optimization Problems, Ph. D thesis, National University of Singapore in Singapore, 2012. Google Scholar

[9]

C. DingD. F. Sun and L. W. Zhang, Characterization of the robust isolated calmness for a class of conic programming problems, SIAM Journal on Optimization, 27 (2017), 67-90.  doi: 10.1137/16M1058753.  Google Scholar

[10]

A. L. Dontchev and R. T. Rockafellar, Characterizations of strong regularity for variational inequalities over polyhedral convex sets, SIAM Journal on Optimization, 6 (1996), 1087-1105.  doi: 10.1137/S1052623495284029.  Google Scholar

[11]

H. T. JongenT. MobertJ. Rückmann and K. Tammer, On inertia and schur complement in optimization, Linear Algebra and Its Applications, 95 (1987), 97-109.  doi: 10.1016/0024-3795(87)90028-0.  Google Scholar

[12]

L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Macmillan, New York, 1964.  Google Scholar

[13]

S. M. Robinson, Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms, Mathematical Programming, 7 (1974), 1-16.  doi: 10.1007/BF01585500.  Google Scholar

[14]

S. M. Robinson, Strongly regular generalized equations, Mathematics of Operations Research, 5 (1980), 43-62.  doi: 10.1287/moor.5.1.43.  Google Scholar

[15]

R. T. Rockafellar, Convex Analysis, Princeton, New Jersey, 1970.  Google Scholar

[16]

R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer-Verlag, New York, 1998. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[17]

A. Shapiro, Sensitivity analysis of generalized equations, Journal of Mathematical Sciences, 115 (2003), 2554-2565.  doi: 10.1023/A:1022940300114.  Google Scholar

[18]

A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, Society for Industrial and Applied Mathematics, SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898718751.  Google Scholar

[19]

D. F. Sun, The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications, Mathematics of Operations Research, 31 (2006), 761-776.  doi: 10.1287/moor.1060.0195.  Google Scholar

[20]

Z. R. Yin and L. W. Zhang, Perturbation analysis of nonlinear semidefinite programming under Jacobian uniqueness conditions, 2017. Available from: http://www.optimization-online.org/DB_FILE/2017/09/6197.pdf. Google Scholar

show all references

References:
[1]

C. Berge, Topological Spaces, Macmillan, New York, 1963. Google Scholar

[2]

J. F. BonnansR. Cominetti and A. Shapiro, Sensitivity analysis of optimization problems under second order regular constraints, Mathematics of Operations Research, 23 (1998), 806-831.  doi: 10.1287/moor.23.4.806.  Google Scholar

[3]

J. F. BonnansR. Cominetti and A. Shapiro, Second order optimality conditions based on parabolic second order tangent sets, SIAM Journal on Optimization, 9 (1999), 466-492.  doi: 10.1137/S1052623496306760.  Google Scholar

[4]

J. F. Bonnans and H. Ramírez C., Perturbation analysis of second order cone programming problems, Mathematical Programming, 104 (2005), 205-227.  doi: 10.1007/s10107-005-0613-4.  Google Scholar

[5]

J. F. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour, SIAM Review, 40 (1998), 228-264.  doi: 10.1137/S0036144596302644.  Google Scholar

[6]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000. doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[7]

J. F. Bonnans and A. Sulem, Pseudopower expansion of solutions of generalized equations and constrained optimization problems, Mathematical Programming, 70 (1995), 123-148.  doi: 10.1007/BF01585932.  Google Scholar

[8]

C. Ding, An Introduction to a Class of Matrix Optimization Problems, Ph. D thesis, National University of Singapore in Singapore, 2012. Google Scholar

[9]

C. DingD. F. Sun and L. W. Zhang, Characterization of the robust isolated calmness for a class of conic programming problems, SIAM Journal on Optimization, 27 (2017), 67-90.  doi: 10.1137/16M1058753.  Google Scholar

[10]

A. L. Dontchev and R. T. Rockafellar, Characterizations of strong regularity for variational inequalities over polyhedral convex sets, SIAM Journal on Optimization, 6 (1996), 1087-1105.  doi: 10.1137/S1052623495284029.  Google Scholar

[11]

H. T. JongenT. MobertJ. Rückmann and K. Tammer, On inertia and schur complement in optimization, Linear Algebra and Its Applications, 95 (1987), 97-109.  doi: 10.1016/0024-3795(87)90028-0.  Google Scholar

[12]

L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Macmillan, New York, 1964.  Google Scholar

[13]

S. M. Robinson, Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms, Mathematical Programming, 7 (1974), 1-16.  doi: 10.1007/BF01585500.  Google Scholar

[14]

S. M. Robinson, Strongly regular generalized equations, Mathematics of Operations Research, 5 (1980), 43-62.  doi: 10.1287/moor.5.1.43.  Google Scholar

[15]

R. T. Rockafellar, Convex Analysis, Princeton, New Jersey, 1970.  Google Scholar

[16]

R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer-Verlag, New York, 1998. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[17]

A. Shapiro, Sensitivity analysis of generalized equations, Journal of Mathematical Sciences, 115 (2003), 2554-2565.  doi: 10.1023/A:1022940300114.  Google Scholar

[18]

A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, Society for Industrial and Applied Mathematics, SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898718751.  Google Scholar

[19]

D. F. Sun, The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications, Mathematics of Operations Research, 31 (2006), 761-776.  doi: 10.1287/moor.1060.0195.  Google Scholar

[20]

Z. R. Yin and L. W. Zhang, Perturbation analysis of nonlinear semidefinite programming under Jacobian uniqueness conditions, 2017. Available from: http://www.optimization-online.org/DB_FILE/2017/09/6197.pdf. Google Scholar

[1]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[2]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[3]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[4]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[5]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[6]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[7]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[8]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[9]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[10]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[11]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[12]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[13]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[14]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[15]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[16]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[17]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[18]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[19]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[20]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (105)
  • HTML views (1220)
  • Cited by (0)

Other articles
by authors

[Back to Top]