[1]
|
A. K. Aboul-Hassan, S. I. Rabia and F. A. Taboly, Performance evaluation of a discrete-time $ Geo^{[X]}/G/1$ retrial queue with general retrial times, Computers & Mathematics with Applications, 58 (2009), 548-557.
doi: 10.1016/j.camwa.2009.03.101.
|
[2]
|
J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999, Top, 7 (1999), 187-211.
doi: 10.1007/BF02564721.
|
[3]
|
J. R. Artalejo, Accessible bibliography on retrial queues: Progress in 2000-2009, Mathematical and Computer Modelling, 51 (2010), 1071-1081.
doi: 10.1016/j.mcm.2009.12.011.
|
[4]
|
J. R. Artalejo and A. Gómez-Corral,
Retrial Queueing Systems: A Computational Approach, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-78725-9.
|
[5]
|
I. Atencia and P. Moreno, A discrete-time $ Geo/G/1$ retrial queue with general retrial times, Queueing Systems, 48 (2004), 5-21.
doi: 10.1023/B:QUES.0000039885.12490.02.
|
[6]
|
I. Atencia and P. Moreno, A discrete-time $ Geo/G/1$ retrial queue with the server subject to starting failures, Annals of Operations Research, 141 (2006), 85-107.
doi: 10.1007/s10479-006-5295-7.
|
[7]
|
I. Atencia and P. Moreno, A single-server retrial queue with general retrial times and Bernoulli schedule, Applied Mathematics and Computation, 162 (2005), 855-880.
doi: 10.1016/j.amc.2003.12.128.
|
[8]
|
H. Bruneel and B. G. Kim,
Discrete-Time Models for Communication Systems Including ATM, Kluwer Academic Publishers, Boston, 1993.
doi: 10.1007/978-1-4615-3130-2.
|
[9]
|
B. D. Choi and J. W. Kim, Discrete-time $ Geo_1, Geo_2/G/1$ retrial queueing systems with two types of calls, Computers & Mathematics with Applications, 33 (1997), 79-88.
doi: 10.1016/S0898-1221(97)00078-3.
|
[10]
|
I. Dimitriou, A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations, Applied Mathematical Modelling, 37 (2013), 1295-1309.
doi: 10.1016/j.apm.2012.04.011.
|
[11]
|
I. Dimitriou, A two class retrial system with coupled orbit queues, Probability in the Engineering and Informational Sciences, 31 (2017), 139-179.
doi: 10.1017/S0269964816000528.
|
[12]
|
I. Dimitriou, A queueing model with two types of retrial customers and paired services, Annals of Operations Research, 238 (2016), 123-143.
doi: 10.1007/s10479-015-2059-2.
|
[13]
|
I. Dimitriou, Analysis of a priority retrial queue with dependent vacation scheme and application to energy saving in wireless communication systems, The Computer Journal, 56 (2013), 1363-1380.
|
[14]
|
T. V. Do, $ M/M/1$ retrial queue with working vacations, Acta Informatica, 47 (2010), 67-75.
doi: 10.1007/s00236-009-0110-y.
|
[15]
|
B. T. Doshi, Queueing systems with vacation-a survey, Queueing Systems, 1 (1986), 29-66.
doi: 10.1007/BF01149327.
|
[16]
|
A. Dudin, C. S. Kim, S. Dudin and O. Dudina, Priority retrial queueing model operating in random environment with varying number and reservation of servers, Applied Mathematics and Computation, 269 (2015), 674-690.
doi: 10.1016/j.amc.2015.08.005.
|
[17]
|
G. I. Falin, A survey of retrial queues, Queueing Systems, 7 (1990), 127-167.
doi: 10.1007/BF01158472.
|
[18]
|
G. I. Falin and J. G. C. Templeton,
Retrial Queues, Chapman & Hall, London, 1997.
|
[19]
|
A. Gandhi, V. Gupta, M. Harchol-Balter and M. A. Kozuch, Optimality analysis of energy-performance trade-off for server farm management, Performance Evaluation, 67 (2010), 1155-1171.
|
[20]
|
S. Gao and J. Wang, On a discrete-time $ GI^X/Geo/1/N-G$ queue with randomized working vacations and at most J vacations, Journal of Industrial and Management Optimization, 11 (2015), 779-806.
doi: 10.3934/jimo.2015.11.779.
|
[21]
|
S. Gao and J. Wang, Discrete-time $ Geo^X/G/1$ retrial queue with general retrial times, working vacations and vacation interruption, Quality Technology & Quantitative Management, 10 (2013), 495-512.
|
[22]
|
J. J. Hunter,
Mathematical Techniques of Applied Probability, Vol. 2, Discrete Time Models: Techniques and Applications, Academic Press, New York, 1983.
|
[23]
|
M. Jain, G. C. Sharma and R. Sharma, Maximum entropy approach for discrete-time unreliable server $ Geo^X/Geo/1$ queue with working vacation, International Journal of Mathematics in Operational Research, 4 (2012), 56-77.
doi: 10.1504/IJMOR.2012.044473.
|
[24]
|
M. Jain, A. Bhagat and C. Shekhar, Double orbit finite retrial queues with priority customers and service interruptions, Applied Mathematics and Computation, 253 (2015), 324-344.
doi: 10.1016/j.amc.2014.12.066.
|
[25]
|
J. C. Ke, C. H. Wu and Z. G. Zhang, Recent developments in vacation queueing models: a short survey, International Journal of Operations Research, 7 (2010), 3-8.
|
[26]
|
P. V. Laxmi and K. Jyothsna, Finite buffer $ GI/Geo/1$ batch servicing queue with multiple working vacations, RAIRO-Operations Research, 48 (2014), 521-543.
doi: 10.1051/ro/2014022.
|
[27]
|
H. Li and T. Yang, $ Geo/G/1$ discrete time retrial queue with Bernoulli schedule, European Journal of Operational Research, 111 (1998), 629-649.
doi: 10.1016/S0377-2217(97)90357-X.
|
[28]
|
J. Li, N. Tian and W. Liu, The discrete-time $ GI/Geo/1$ queue with multiple working vacations, Queueing Systems, 56 (2007), 53-63.
doi: 10.1007/s11134-007-9030-0.
|
[29]
|
J. Li, Analysis of the discrete-time $Geo/G/1$ working vacation queue and its application to network scheduling, Computers & Industrial Engineering, 65 (2013), 594-604.
doi: 10.1016/j.cie.2013.04.009.
|
[30]
|
T. Li, Z. Wang and Z. Liu, $Geo/Geo/1$ retrial queue with working vacations and vacation interruption, Journal of Applied Mathematics and Computing, 39 (2012), 131-143.
doi: 10.1007/s12190-011-0516-x.
|
[31]
|
T. Li, Z. Liu and Z. Wang, $M/M/1$ retrial queue with collisions and working vacation interruption under N-policy, RAIRO-Operations Research, 46 (2012), 355-371.
doi: 10.1051/ro/2012022.
|
[32]
|
Z. Liu and S. Gao, Discrete-time $Geo_1, Geo^X_2/G_1, G_2/1$ retrial queue with two classes of customers and feedback, Mathematical and Computer Modelling, 53 (2011), 1208-1220.
doi: 10.1016/j.mcm.2010.11.090.
|
[33]
|
T. Phung-Duc, Retrial queueing models: A survey on theory and applications, in Stochastic Operations Research in Business and Industry (eds. T. Dohi, K. Ano and S. Kasahara), World Scientific Publisher, (2017), 1–26.
|
[34]
|
T. Phung-Duc, Single server retrial queues with setup time, Journal of Industrial and Management Optimization, 13 (2017), 1329-1345.
doi: 10.3934/jimo.2016075.
|
[35]
|
T. Phung-Duc, Exact solutions for $M/M/c/$ Setup queues, Telecommunication Systems, 64 (2017), 309-324.
doi: 10.1007/s11235-016-0177-z.
|
[36]
|
T. Phung-Duc, W. Rogiest and S. Wittevrongel, Single server retrial queues with speed scaling: Analysis and performance evaluation, Journal of Industrial and Management Optimization, 13 (2017), 1927-1943.
doi: 10.3934/jimo.2017025.
|
[37]
|
T. Phung-Duc and K. Kawanishi, Impacts of retrials on power-saving policy in data centers, Proceedings of the 11th International Conference on Queueing Theory and Network Applications, 22 (2016), 1-4.
doi: 10.1145/3016032.3016047.
|
[38]
|
L. R. Ronald,
Optimization in Operations Research, Prentice Hall, New Jersey, 1997.
|
[39]
|
L. D. Servi and S. G. Finn, $ M/M/1$ queue with working vacations ($ M/M/1/WV$), Performance Evaluation, 50 (2002), 41-52.
doi: 10.1016/S0166-5316(02)00057-3.
|
[40]
|
H. Takagi,
Queueing Analysis: A Foundation of Performance Evaluation, North-Holland Publishing Co., Amsterdam, 1993.
|
[41]
|
N. Tian and Z. G. Zhang,
Vacation Queueing Models: Theory and Applications, Springer, New York, 2006.
|
[42]
|
S. Upadhyaya, Working vacation policy for a discrete-time $Geo^X/Geo/1$ retrial queue, OPSEARCH, 52 (2015), 650-669.
doi: 10.1007/s12597-015-0200-2.
|
[43]
|
J. Walraevens, D. Claeys and T. Phung-Duc, Asymptotics of queue length distributions in priority retrial queues, preprint, arXiv: 1801.06993.
|
[44]
|
J. Wang and Q. Zhao, A discrete-time $Geo/G/1$ retrial queue with starting failures and second optional service, Computers & Mathematics with Applications, 53 (2007), 115-127.
doi: 10.1016/j.camwa.2006.10.024.
|
[45]
|
M. E. Woodward,
Communication and Computer Networks: Modelling with Discrete-Time Queues, IEEE Computer Society Press, Los Alamitos, California, 1994.
|
[46]
|
J. Wu, Z. Liu and Y. Peng, A discrete-time $Geo/G/1$ retrial queue with preemptive resume and collisions, Applied Mathematical Modelling, 35 (2011), 837-847.
doi: 10.1016/j.apm.2010.07.039.
|
[47]
|
D. A. Wu and H. Takagi, $M/G/1$ queue with multiple working vacations, Performance Evaluation, 63 (2006), 654-681.
|
[48]
|
T. Yang and J. G. C. Templeton, A survey on retrial queues, Queueing Systems, 2 (1987), 201-233.
doi: 10.1007/BF01158899.
|
[49]
|
T. Yang and H. Li, On the steady-state queue size distribution of the discrete-time $Geo/G/1$ queue with repeated customers, Queueing Systems, 21 (1995), 199-215.
doi: 10.1007/BF01158581.
|
[50]
|
M. Yu, Y. Tang, Y. Fu and L. Pan, $ GI/Geom/1/N/MWV$ queue with changeover time and searching for the optimum service rate in working vacation period, Journal of Computational and Applied Mathematics, 235 (2011), 2170-2184.
doi: 10.1016/j.cam.2010.10.013.
|