\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Probabilistic control of Markov jump systems by scenario optimization approach

  • * Corresponding author: Yanyan YIN

    * Corresponding author: Yanyan YIN 
The first author is supported by NSFC grant 61503155.
Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • This paper addresses the new problem of probabilistic robust stabilization for uncertain stochastic systems by using scenario optimization approach, where the uncertainties are not assumed to be norm-bounded. State feedback controllers are designed to guarantee that the closed-loop system is robust probabilistic stable. The problem of designing the controller gains is formulated and solved as linear matrix inequality (LMI) constraints. Simulation results are presented to illustrate the correctness and usefulness of the controllers designed.

    Mathematics Subject Classification: Primary: 93E15, 58F17; Secondary: 93E03.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  State trajectory of a-posteriori Monte-Carlo analysis

  • [1] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: SIAM, vol. 15, Studies in Applied Mathematics, 1994. doi: 10.1137/1.9781611970777.
    [2] G. C. Calafiore and M. C. Campi, The scenario approach to robust control design, IEEE Transactions on Automatic Control, 51 (2006), 742-753.  doi: 10.1109/TAC.2006.875041.
    [3] B. R. Barmish, New Tools for Robustness of Linear Systems, New York, MacMillan, 1994.
    [4] G. C. CalafioreaF. Dabbeneb and R. Tempo, Research on probabilistic methods for control system design, Automatica J. IFAC, 47 (2011), 1279-1293.  doi: 10.1016/j.automatica.2011.02.029.
    [5] M. C. CampiS. Garatti and M. Prandini, The scenario approach for systems and control design, Annual Reviews in Control, 33 (2009), 149-157. 
    [6] O. L. V. Costa, M. D. Fragoso and R. P. Marques, Discrete-time Markovian Jump Linear Systems, London: Springer-Verlag, 2005. doi: 10.1007/b138575.
    [7] Y. KangZ. LiY. Dong and H. Xi, Markovian based fault-tolerant control for wheeled mobile manipulators, IEEE Trans on Control System Technology, 20 (2012), 266-276.  doi: 10.1109/TCST.2011.2109062.
    [8] N. M. Krasovskii and E. A. Lidskii, Analytical design of controllers in systems with random attributes, Automation and Remote Control, 22 (1961), 1141-1146. 
    [9] A. Nemirovski, Several NP-hard problems arising in robust stability analysis, Mathematics of Control, Signals and Systems, 6 (1993), 99-105.  doi: 10.1007/BF01211741.
    [10] A. Prékopa, Stochastic Programming, Norwell, MA: Kluwer, 1995. doi: 10.1007/978-94-017-3087-7.
    [11] Y. Shi, Y. Yin, S. Wang, Y. Liu and F. Liu, Distributed leader-following consensus of nonlinear multi-agent systems with nonlinear input dynamics, Neurocomputing,
    [12] P. ShiE. K. Boukas and R. Agarwal, Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters, IEEE Trans on Automatic Control, 44 (1999), 1592-1597.  doi: 10.1109/9.780431.
    [13] Y. Yin, Z. Lin, Y. Liu and K. L. Teo, Event-triggered constrained control of positive systems with input saturation, International Journal of Robust and Nonlinear Control, 2018. doi: 10.1002/rnc.4097.
    [14] Y. Yin and Z. Lin, Constrained control of uncertain nonhomogeneous Markovian jump systems, International Journal of Robust and Nonlinear Control, 27 (2017), 3937-3950. 
    [15] Y. YinY. LiuK. L. Teo and S. Wang, Event-triggered probabilistic robust control of linear systems with input constrains: By scenario optimization approach, International Journal of Robust and Nonlinear Control, 28 (2018), 144-153.  doi: 10.1002/rnc.3858.
    [16] Y. YinP. Shi and F. Liu, Gain-scheduled robust fault detection on time-delay stochastic nonlinear systems, IEEE Trans on Industrial Electronics, 58 (2011), 4908-4916.  doi: 10.1109/TIE.2010.2103537.
    [17] Y. YinP. ShiF. LiuK. L. Teo and C. C. Lim, Robust filtering for nonlinear nonhomogeneous Markov jump systems by fuzzy approximation approach, IEEE Transactions on Cybernetics, 45 (2015), 1706-1716.  doi: 10.1109/TCYB.2014.2358680.
    [18] L. ZhuY. YinF. Liu and S. Wang, $H_∞$ filtering for uncertain periodic Markov jump systems with periodic and partly unknown information, Circuits, Systems, and Signal Processing, (2018), 1-15.  doi: 10.1007/s00034-018-0759-y.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(1496) PDF downloads(222) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return