Article Contents
Article Contents

# Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority

• * Corresponding author: Xiuli Xu
• This paper investigates the low-priority customers' strategic behavior in the single-server queueing system with general service time and two customer types. The priority system is preemptive resume, which means that if a high-priority customer enters the system that are serving a low-priority customer, the arriving customer preempts the service facility and the preempted customer returns to the head of the queue for his own class. The customer who is preempted resumes service at the point of interruption upon reentering the system. The low-priority customer's dilemma is whether to join or balk based on a linear reward-cost structure. Two cases are distinguished based on the different levels of information that the low-priority customers acquire before joining the system. The equilibrium threshold strategy in the observable case and the equilibrium balking strategy as well as the socially optimal balking strategy in the unobservable case for the low-priority customers are derived finally.

Mathematics Subject Classification: Primary: 60K25; Secondary: 90B22.

 Citation:

• Figure 1.  The service process of an arbitrary arriving class-1 customer

Figure 2.  The service process of an arbitrary arriving class-2 customer

Figure 3.  The equilibrium thresholds of the class-1 customers vs.$K_1$ for ${\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, {C_1} = 8$

Figure 4.  The equilibrium thresholds of the class-1 customers vs.$C_1$ for ${\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, {K_1} = 100$

Figure 5.  The equilibrium thresholds of the class-1 customers vs.$E\left[ {{G_1}} \right]$ for ${\lambda _2} = 0.5, E\left[ {{G_2}} \right] = 1, {K_1} = 100, {C_1} = 5$

Figure 6.  The expected net social benefit vs.$q$ for ${\lambda _1} = {\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {C_1} = 10, {K_2} = 100, {C_2} = 50$

Figure 7.  The expected net social benefit vs.$q$ for ${\lambda _1} = {\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {K_1} = 10, {K_2} = 100, {C_2} = 50$

Figure 8.  Equilibrium and socially optimal joining probabilities of the class-1 customers vs. ${K_1}$ for ${\lambda _1} = {\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {C_1} = 10$

Figure 9.  Equilibrium and socially optimal joining probabilities of the class-1 customers vs. ${C_1}$ for ${\lambda _1} = {\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {K_1} = 50$

Figure 10.  Equilibrium and socially optimal joining probabilities of the class-1 customers vs. ${\lambda _1}$ for ${\lambda _2} = 0.2, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {K_1} = 15, {C_1} = 10$

•  [1] E. Altaman and R. Hassin, Non-threshold equilibrium for customers joining an M/G/1 queue, International Symposium on Dynamic Games & Applications, 2002 (2002), 56-64. [2] J. Altmann, H. Daanen, H. Oliver and A. S.-B. Suarez, How to market-manage a QoS network, Proceedings - IEEE INFOCOM 1, 2002 (2002), 56-64.  doi: 10.1109/INFCOM.2002.1019270. [3] H. Berg, M. Mandjes and R. Nunez-Queija, Pricing and distributed QoS control for elastic network traffic, Operations Research Letters, 35 (2007), 297-307.  doi: 10.1016/j.orl.2006.03.018. [4] O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes, European Journal of Operational Research, 218 (2012), 708-715.  doi: 10.1016/j.ejor.2011.11.043. [5] G. Brouns and J. Wal, Optimal threshold policies in a two-class preemptive priority queue with admission and termination control, Queueing System, 54 (2006), 21-33.  doi: 10.1007/s11134-006-8307-z. [6] F. Chen and V. Kulkarni, Individual, class-based, and social optimal admission policies in two-priority queues, Stochastic Models, 23 (2007), 97-127.  doi: 10.1080/15326340601142180. [7] P. Chen and Y. Zhou, Equilibrium balking strategies in the single server queue with setup times and breakdowns, Operational Research: An International Journal, 15 (2015), 213-231.  doi: 10.1007/s12351-015-0174-0. [8] A. Economou, A. Gómez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times, Performance Evaluation, 68 (2011), 967-982.  doi: 10.1016/j.peva.2011.07.001. [9] N. Edelson and D. Hildebrand, Congestion tolls for Poisson queueing processes, Econometrica, 43 (1975), 81-92.  doi: 10.2307/1913415. [10] J. Erlichman and R. Hassin, Equilibrium solutions in the observable M/M/1 queue with overtaking, International ICST Conference on Performance Evaluation Methodologies & Tools, (1975). doi: 10.4108/ICST.VALUETOOLS2009.8039. [11] S. Gavirneni and V. Kulkarni, Self-selecting priority queues with burr distributed waiting costs, Production & Operations Management, 25 (2016), 979-992. [12] W. Gilland and D. Warsing, The impact of revenue-maximizing priority pricing on customer delay costs, Decision Sciences, 40 (2009), 89-120. [13] R. Hassin, Rational Queueing, CRC press, Boca Raton, 2016. doi: 10.1201/b20014. [14] M. Haviv and Y. Kerner, On balking from an empty queue, Queueing Systems Theory & Applications, 55 (2007), 239-249.  doi: 10.1007/s11134-007-9020-2. [15] V. Hsu, S. Xu and B. Jukic, Optimal scheduling and incentive compatible pricing for a service system with quality of service guarantees, Manufacturing & Service Operations Management, 11 (2008), 375-396.  doi: 10.1287/msom.1080.0226. [16] Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue, Games & Economic Behavior, 71 (2011), 521-526.  doi: 10.1016/j.geb.2010.06.002. [17] Y. Kim and M. Mannino, Optimal incentive-compatible pricing for M/G/1 queues, Operations Research Letters, 31 (2003), 459-461.  doi: 10.1016/S0167-6377(03)00060-9. [18] D. Lee and S. Park, Performance analysis of queueing strategies for multiple priority calls inmultiservice personal communications services, Computer Communications, 23 (2000), 1069-1083. [19] L. Li, J. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns, Computers & Industrial Engineering, 66 (2013), 751-757.  doi: 10.1016/j.cie.2013.09.023. [20] C. Liu and R. Berry, A priority queue model for competition with shared spectrum, Communication, Control & Computing, 2014 (2014), 629-636.  doi: 10.1109/ALLERTON.2014.7028514. [21] M. Mandjes, Pricing strategies under heterogeneous service requirements, Computer Networks, 42 (2003), 231-249. [22] P. Naor, The regulation of queue size by levying tolls, Econometrica, 37 (1969), 15-24.  doi: 10.2307/1909200. [23] A. Printezis and A. Burnetas, Priority option pricing in an M/M/m queue, Operations Research Letters, 36 (2008), 700-704.  doi: 10.1016/j.orl.2008.07.001. [24] S. Ross, Introduction to Probability Models, Academic Press, Boston, 1989. [25] W. Sun, P. Guo and N. Tian, Relative priority policies for minimizing the cost of queueing systems with service discrimination, Applied Mathematical Modelling, 33 (2009), 4241-4258.  doi: 10.1016/j.apm.2009.03.012. [26] W. Sun, Sy. Li and C.-G. E., Equilibrium and optimal balking strategies of customers in Markovian queues with multiple vacations and N-policy, Applied Mathematical Modelling, 40 (2016), 284–301. doi: 10.1016/j.apm.2015.04.045. [27] H. Takagi, Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue, Journal of Industrial and Management Optimization, 13 (2017), 1945-1973.  doi: 10.3934/jimo.2017026. [28] R. Tian, D. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.  doi: 10.3934/jimo.2015.11.715. [29] B. Xu and X. Xu, Equilibrium strategic behavior of customers in the M/M/1 queue with partial failures and repairs, Operational Research: An International Journal, 18 (2018), 273-292.  doi: 10.1007/s12351-016-0264-7. [30] B. Xu, X. Xu and X. Wang, Optimal balking strategies for high-priority customers in M/G/1 queues with 2 classes of customers, Journal of Applied Mathematics and Computing, 51 (2016), 623-642.  doi: 10.1007/s12190-015-0923-5. [31] F. Zhang, J. Wang and B. Liu, Equilibrium balking strategies in markovian queues with working vacations, Applied Mathematical Modelling, 37 (2013), 8264-8282.  doi: 10.1016/j.apm.2013.03.049. [32] F. Zhang, J. Wang and B. Liu, Equilibrium joining probabilities in observable queues with general service and setup times, Journal of Industrial and Management Optimization, 9 (2013), 901-917.  doi: 10.3934/jimo.2013.9.901.

Figures(10)