• Previous Article
    Online ordering strategy for the discrete newsvendor problem with order value-based free-shipping
  • JIMO Home
  • This Issue
  • Next Article
    Optimal pricing of perishable products with replenishment policy in the presence of strategic consumers
October  2019, 15(4): 1599-1615. doi: 10.3934/jimo.2018113

Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority

1. 

School of Economics and Management, Beihang University, Beijing 100191, China

2. 

College of Science, Yanshan University, Hebei, Qinhuangdao 066004, China

3. 

School of Economics and Management, Beihang University, Beijing 100191, China

4. 

Institute of Economics and Business, Beihang University, Beijing 100191, China

* Corresponding author: Xiuli Xu

Received  October 2016 Revised  June 2018 Published  August 2018

This paper investigates the low-priority customers' strategic behavior in the single-server queueing system with general service time and two customer types. The priority system is preemptive resume, which means that if a high-priority customer enters the system that are serving a low-priority customer, the arriving customer preempts the service facility and the preempted customer returns to the head of the queue for his own class. The customer who is preempted resumes service at the point of interruption upon reentering the system. The low-priority customer's dilemma is whether to join or balk based on a linear reward-cost structure. Two cases are distinguished based on the different levels of information that the low-priority customers acquire before joining the system. The equilibrium threshold strategy in the observable case and the equilibrium balking strategy as well as the socially optimal balking strategy in the unobservable case for the low-priority customers are derived finally.

Citation: Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113
References:
[1]

E. Altaman and R. Hassin, Non-threshold equilibrium for customers joining an M/G/1 queue, International Symposium on Dynamic Games & Applications, 2002 (2002), 56-64.   Google Scholar

[2]

J. AltmannH. DaanenH. Oliver and A. S.-B. Suarez, How to market-manage a QoS network, Proceedings - IEEE INFOCOM 1, 2002 (2002), 56-64.  doi: 10.1109/INFCOM.2002.1019270.  Google Scholar

[3]

H. BergM. Mandjes and R. Nunez-Queija, Pricing and distributed QoS control for elastic network traffic, Operations Research Letters, 35 (2007), 297-307.  doi: 10.1016/j.orl.2006.03.018.  Google Scholar

[4]

O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes, European Journal of Operational Research, 218 (2012), 708-715.  doi: 10.1016/j.ejor.2011.11.043.  Google Scholar

[5]

G. Brouns and J. Wal, Optimal threshold policies in a two-class preemptive priority queue with admission and termination control, Queueing System, 54 (2006), 21-33.  doi: 10.1007/s11134-006-8307-z.  Google Scholar

[6]

F. Chen and V. Kulkarni, Individual, class-based, and social optimal admission policies in two-priority queues, Stochastic Models, 23 (2007), 97-127.  doi: 10.1080/15326340601142180.  Google Scholar

[7]

P. Chen and Y. Zhou, Equilibrium balking strategies in the single server queue with setup times and breakdowns, Operational Research: An International Journal, 15 (2015), 213-231.  doi: 10.1007/s12351-015-0174-0.  Google Scholar

[8]

A. EconomouA. Gómez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times, Performance Evaluation, 68 (2011), 967-982.  doi: 10.1016/j.peva.2011.07.001.  Google Scholar

[9]

N. Edelson and D. Hildebrand, Congestion tolls for Poisson queueing processes, Econometrica, 43 (1975), 81-92.  doi: 10.2307/1913415.  Google Scholar

[10]

J. Erlichman and R. Hassin, Equilibrium solutions in the observable M/M/1 queue with overtaking, International ICST Conference on Performance Evaluation Methodologies & Tools, (1975). doi: 10.4108/ICST.VALUETOOLS2009.8039.  Google Scholar

[11]

S. Gavirneni and V. Kulkarni, Self-selecting priority queues with burr distributed waiting costs, Production & Operations Management, 25 (2016), 979-992.   Google Scholar

[12]

W. Gilland and D. Warsing, The impact of revenue-maximizing priority pricing on customer delay costs, Decision Sciences, 40 (2009), 89-120.   Google Scholar

[13]

R. Hassin, Rational Queueing, CRC press, Boca Raton, 2016. doi: 10.1201/b20014.  Google Scholar

[14]

M. Haviv and Y. Kerner, On balking from an empty queue, Queueing Systems Theory & Applications, 55 (2007), 239-249.  doi: 10.1007/s11134-007-9020-2.  Google Scholar

[15]

V. HsuS. Xu and B. Jukic, Optimal scheduling and incentive compatible pricing for a service system with quality of service guarantees, Manufacturing & Service Operations Management, 11 (2008), 375-396.  doi: 10.1287/msom.1080.0226.  Google Scholar

[16]

Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue, Games & Economic Behavior, 71 (2011), 521-526.  doi: 10.1016/j.geb.2010.06.002.  Google Scholar

[17]

Y. Kim and M. Mannino, Optimal incentive-compatible pricing for M/G/1 queues, Operations Research Letters, 31 (2003), 459-461.  doi: 10.1016/S0167-6377(03)00060-9.  Google Scholar

[18]

D. Lee and S. Park, Performance analysis of queueing strategies for multiple priority calls inmultiservice personal communications services, Computer Communications, 23 (2000), 1069-1083.   Google Scholar

[19]

L. LiJ. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns, Computers & Industrial Engineering, 66 (2013), 751-757.  doi: 10.1016/j.cie.2013.09.023.  Google Scholar

[20]

C. Liu and R. Berry, A priority queue model for competition with shared spectrum, Communication, Control & Computing, 2014 (2014), 629-636.  doi: 10.1109/ALLERTON.2014.7028514.  Google Scholar

[21]

M. Mandjes, Pricing strategies under heterogeneous service requirements, Computer Networks, 42 (2003), 231-249.   Google Scholar

[22]

P. Naor, The regulation of queue size by levying tolls, Econometrica, 37 (1969), 15-24.  doi: 10.2307/1909200.  Google Scholar

[23]

A. Printezis and A. Burnetas, Priority option pricing in an M/M/m queue, Operations Research Letters, 36 (2008), 700-704.  doi: 10.1016/j.orl.2008.07.001.  Google Scholar

[24]

S. Ross, Introduction to Probability Models, Academic Press, Boston, 1989.  Google Scholar

[25]

W. SunP. Guo and N. Tian, Relative priority policies for minimizing the cost of queueing systems with service discrimination, Applied Mathematical Modelling, 33 (2009), 4241-4258.  doi: 10.1016/j.apm.2009.03.012.  Google Scholar

[26]

W. Sun, Sy. Li and C.-G. E., Equilibrium and optimal balking strategies of customers in Markovian queues with multiple vacations and N-policy, Applied Mathematical Modelling, 40 (2016), 284–301. doi: 10.1016/j.apm.2015.04.045.  Google Scholar

[27]

H. Takagi, Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue, Journal of Industrial and Management Optimization, 13 (2017), 1945-1973.  doi: 10.3934/jimo.2017026.  Google Scholar

[28]

R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.  doi: 10.3934/jimo.2015.11.715.  Google Scholar

[29]

B. Xu and X. Xu, Equilibrium strategic behavior of customers in the M/M/1 queue with partial failures and repairs, Operational Research: An International Journal, 18 (2018), 273-292.  doi: 10.1007/s12351-016-0264-7.  Google Scholar

[30]

B. XuX. Xu and X. Wang, Optimal balking strategies for high-priority customers in M/G/1 queues with 2 classes of customers, Journal of Applied Mathematics and Computing, 51 (2016), 623-642.  doi: 10.1007/s12190-015-0923-5.  Google Scholar

[31]

F. ZhangJ. Wang and B. Liu, Equilibrium balking strategies in markovian queues with working vacations, Applied Mathematical Modelling, 37 (2013), 8264-8282.  doi: 10.1016/j.apm.2013.03.049.  Google Scholar

[32]

F. ZhangJ. Wang and B. Liu, Equilibrium joining probabilities in observable queues with general service and setup times, Journal of Industrial and Management Optimization, 9 (2013), 901-917.  doi: 10.3934/jimo.2013.9.901.  Google Scholar

show all references

References:
[1]

E. Altaman and R. Hassin, Non-threshold equilibrium for customers joining an M/G/1 queue, International Symposium on Dynamic Games & Applications, 2002 (2002), 56-64.   Google Scholar

[2]

J. AltmannH. DaanenH. Oliver and A. S.-B. Suarez, How to market-manage a QoS network, Proceedings - IEEE INFOCOM 1, 2002 (2002), 56-64.  doi: 10.1109/INFCOM.2002.1019270.  Google Scholar

[3]

H. BergM. Mandjes and R. Nunez-Queija, Pricing and distributed QoS control for elastic network traffic, Operations Research Letters, 35 (2007), 297-307.  doi: 10.1016/j.orl.2006.03.018.  Google Scholar

[4]

O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes, European Journal of Operational Research, 218 (2012), 708-715.  doi: 10.1016/j.ejor.2011.11.043.  Google Scholar

[5]

G. Brouns and J. Wal, Optimal threshold policies in a two-class preemptive priority queue with admission and termination control, Queueing System, 54 (2006), 21-33.  doi: 10.1007/s11134-006-8307-z.  Google Scholar

[6]

F. Chen and V. Kulkarni, Individual, class-based, and social optimal admission policies in two-priority queues, Stochastic Models, 23 (2007), 97-127.  doi: 10.1080/15326340601142180.  Google Scholar

[7]

P. Chen and Y. Zhou, Equilibrium balking strategies in the single server queue with setup times and breakdowns, Operational Research: An International Journal, 15 (2015), 213-231.  doi: 10.1007/s12351-015-0174-0.  Google Scholar

[8]

A. EconomouA. Gómez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times, Performance Evaluation, 68 (2011), 967-982.  doi: 10.1016/j.peva.2011.07.001.  Google Scholar

[9]

N. Edelson and D. Hildebrand, Congestion tolls for Poisson queueing processes, Econometrica, 43 (1975), 81-92.  doi: 10.2307/1913415.  Google Scholar

[10]

J. Erlichman and R. Hassin, Equilibrium solutions in the observable M/M/1 queue with overtaking, International ICST Conference on Performance Evaluation Methodologies & Tools, (1975). doi: 10.4108/ICST.VALUETOOLS2009.8039.  Google Scholar

[11]

S. Gavirneni and V. Kulkarni, Self-selecting priority queues with burr distributed waiting costs, Production & Operations Management, 25 (2016), 979-992.   Google Scholar

[12]

W. Gilland and D. Warsing, The impact of revenue-maximizing priority pricing on customer delay costs, Decision Sciences, 40 (2009), 89-120.   Google Scholar

[13]

R. Hassin, Rational Queueing, CRC press, Boca Raton, 2016. doi: 10.1201/b20014.  Google Scholar

[14]

M. Haviv and Y. Kerner, On balking from an empty queue, Queueing Systems Theory & Applications, 55 (2007), 239-249.  doi: 10.1007/s11134-007-9020-2.  Google Scholar

[15]

V. HsuS. Xu and B. Jukic, Optimal scheduling and incentive compatible pricing for a service system with quality of service guarantees, Manufacturing & Service Operations Management, 11 (2008), 375-396.  doi: 10.1287/msom.1080.0226.  Google Scholar

[16]

Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue, Games & Economic Behavior, 71 (2011), 521-526.  doi: 10.1016/j.geb.2010.06.002.  Google Scholar

[17]

Y. Kim and M. Mannino, Optimal incentive-compatible pricing for M/G/1 queues, Operations Research Letters, 31 (2003), 459-461.  doi: 10.1016/S0167-6377(03)00060-9.  Google Scholar

[18]

D. Lee and S. Park, Performance analysis of queueing strategies for multiple priority calls inmultiservice personal communications services, Computer Communications, 23 (2000), 1069-1083.   Google Scholar

[19]

L. LiJ. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns, Computers & Industrial Engineering, 66 (2013), 751-757.  doi: 10.1016/j.cie.2013.09.023.  Google Scholar

[20]

C. Liu and R. Berry, A priority queue model for competition with shared spectrum, Communication, Control & Computing, 2014 (2014), 629-636.  doi: 10.1109/ALLERTON.2014.7028514.  Google Scholar

[21]

M. Mandjes, Pricing strategies under heterogeneous service requirements, Computer Networks, 42 (2003), 231-249.   Google Scholar

[22]

P. Naor, The regulation of queue size by levying tolls, Econometrica, 37 (1969), 15-24.  doi: 10.2307/1909200.  Google Scholar

[23]

A. Printezis and A. Burnetas, Priority option pricing in an M/M/m queue, Operations Research Letters, 36 (2008), 700-704.  doi: 10.1016/j.orl.2008.07.001.  Google Scholar

[24]

S. Ross, Introduction to Probability Models, Academic Press, Boston, 1989.  Google Scholar

[25]

W. SunP. Guo and N. Tian, Relative priority policies for minimizing the cost of queueing systems with service discrimination, Applied Mathematical Modelling, 33 (2009), 4241-4258.  doi: 10.1016/j.apm.2009.03.012.  Google Scholar

[26]

W. Sun, Sy. Li and C.-G. E., Equilibrium and optimal balking strategies of customers in Markovian queues with multiple vacations and N-policy, Applied Mathematical Modelling, 40 (2016), 284–301. doi: 10.1016/j.apm.2015.04.045.  Google Scholar

[27]

H. Takagi, Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue, Journal of Industrial and Management Optimization, 13 (2017), 1945-1973.  doi: 10.3934/jimo.2017026.  Google Scholar

[28]

R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.  doi: 10.3934/jimo.2015.11.715.  Google Scholar

[29]

B. Xu and X. Xu, Equilibrium strategic behavior of customers in the M/M/1 queue with partial failures and repairs, Operational Research: An International Journal, 18 (2018), 273-292.  doi: 10.1007/s12351-016-0264-7.  Google Scholar

[30]

B. XuX. Xu and X. Wang, Optimal balking strategies for high-priority customers in M/G/1 queues with 2 classes of customers, Journal of Applied Mathematics and Computing, 51 (2016), 623-642.  doi: 10.1007/s12190-015-0923-5.  Google Scholar

[31]

F. ZhangJ. Wang and B. Liu, Equilibrium balking strategies in markovian queues with working vacations, Applied Mathematical Modelling, 37 (2013), 8264-8282.  doi: 10.1016/j.apm.2013.03.049.  Google Scholar

[32]

F. ZhangJ. Wang and B. Liu, Equilibrium joining probabilities in observable queues with general service and setup times, Journal of Industrial and Management Optimization, 9 (2013), 901-917.  doi: 10.3934/jimo.2013.9.901.  Google Scholar

Figure 1.  The service process of an arbitrary arriving class-1 customer
Figure 2.  The service process of an arbitrary arriving class-2 customer
Figure 3.  The equilibrium thresholds of the class-1 customers vs.$K_1$ for ${\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, {C_1} = 8$
Figure 4.  The equilibrium thresholds of the class-1 customers vs.$C_1$ for ${\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, {K_1} = 100$
Figure 5.  The equilibrium thresholds of the class-1 customers vs.$E\left[ {{G_1}} \right]$ for ${\lambda _2} = 0.5, E\left[ {{G_2}} \right] = 1, {K_1} = 100, {C_1} = 5$
Figure 6.  The expected net social benefit vs.$q$ for ${\lambda _1} = {\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {C_1} = 10, {K_2} = 100, {C_2} = 50$
Figure 7.  The expected net social benefit vs.$q$ for ${\lambda _1} = {\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {K_1} = 10, {K_2} = 100, {C_2} = 50$
Figure 8.  Equilibrium and socially optimal joining probabilities of the class-1 customers vs. ${K_1}$ for ${\lambda _1} = {\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {C_1} = 10$
Figure 9.  Equilibrium and socially optimal joining probabilities of the class-1 customers vs. ${C_1}$ for ${\lambda _1} = {\lambda _2} = 0.5, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {K_1} = 50$
Figure 10.  Equilibrium and socially optimal joining probabilities of the class-1 customers vs. ${\lambda _1}$ for ${\lambda _2} = 0.2, E\left[ {{G_1}} \right] = E\left[ {{G_2}} \right] = 1, E\left[ {{G_1^2}} \right] = E\left[ {{G_2^2}} \right] = 1.2, {K_1} = 15, {C_1} = 10$
[1]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[2]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[3]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[4]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[5]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[6]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[7]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[8]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[9]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[10]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[11]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[12]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[13]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[14]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[15]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (222)
  • HTML views (1426)
  • Cited by (2)

Other articles
by authors

[Back to Top]