
-
Previous Article
Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis
- JIMO Home
- This Issue
-
Next Article
Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints
Uncertain portfolio selection with mental accounts and background risk
1. | Business School, Central University of Finance and Economics, Beijing 100081, China |
2. | Guanghua School of Management, Peking University, Harvest Fund Management Co., Ltd, Beijing 100871, China |
In real life, investors face background risk which may affect their portfolio selection decision. In addition, since the security market is too complex, there are situations where the future security returns cannot be reflected by historical data and have to be given by experts' estimations according to their knowledge and judgement. This paper discusses a portfolio selection problem with background risk in such an uncertain environment. In the paper, in order to reflect different attitudes towards risk that vary by goal in one portfolio investment, we apply mental accounts to the investment. Using uncertainty theory, we propose an uncertain portfolio selection model with mental accounts and background risk and provide the determinate form of the model. Moreover, we discuss the shape and location of efficient frontier of the subportfolios with background risk and without background risk. Further, we present the conditions under which the optimal aggregate portfolio is on the efficient frontier when return rates of security and background asset are all normal uncertain variables. Finally, a real portfolio selection example is given as an illustration.
References:
[1] |
G. J. Alexander and A. M. Baptista,
Portfolio selection with mental accounts and delegation, Journal of Banking and Finance, 36 (2011), 2637-2656.
|
[2] |
S. Aramonte, M. G. Rodriguez and J. Wu,
Dynamic factor Value-at-Risk for large heteroskedastic portfolios, Journal of Banking and Finance, 37 (2013), 4299-4309.
|
[3] |
A. M. Baptista,
Portfolio selection with mental accounts and background risk, Journal of Banking and Finance, 36 (2012), 968-980.
doi: 10.1016/j.jbankfin.2011.10.015. |
[4] |
R. Castellano and R. Cerqueti,
Mean-variance portfolio selection in presence of infrequently traded stocks, European Journal of Operational Research, 234 (2014), 442-449.
doi: 10.1016/j.ejor.2013.04.024. |
[5] |
S. Das, H. Markowitz, J. Scheid and M. Statman,
Portfolio optimization with mental accounts, Journal of Financial and Quantitative Analysis, 45 (2010), 311-334.
doi: 10.1017/S0022109010000141. |
[6] |
S. Das, H. Markowitz, J. Scheid and M. Statman,
Portfolios for investors who want to reach their goals while staying on the mean-variance efficient frontier, Journal of Wealth Management, (2011), 1-7.
|
[7] |
C. Gollier,
The Economics of Risk and Time, MIT Press, Cambridge, 2001. |
[8] |
X. X. Huang,
Portfolio Analysis: From Probabilistic to Credibilistic and Uncertain Approaches, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-11214-0. |
[9] |
X. X. Huang,
Mean-risk model for uncertain portfolio selection, Fuzzy Optimization and Decision Making, 10 (2011), 71-89.
doi: 10.1007/s10700-010-9094-x. |
[10] |
X. X. Huang,
A risk index model for portfolio selection with returns subject to experts' evaluations, Fuzzy Optimization and Decision Making, 11 (2012), 451-463.
doi: 10.1007/s10700-012-9125-x. |
[11] |
X. X. Huang,
Mean-variance models for portfolio selection subject to experts' estimations, Expert Systems with Applications, 39 (2012), 5887-5893.
doi: 10.1016/j.eswa.2011.11.119. |
[12] |
X. X. Huang and H. Di,
Uncertain portfolio selection with background risk, Applied Mathematics and Computation, 276 (2016), 284-296.
doi: 10.1016/j.amc.2015.12.018. |
[13] |
H. H. Huang and C. P. Wang,
Portfolio selection and portfolio frontier with background risk, North American Journal of Economics and Finance, 26 (2013), 177-196.
doi: 10.1016/j.najef.2013.09.001. |
[14] |
X. X. Huang and H. Y. Ying,
Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations, Economic Modelling, 11 (2012), 451-463.
doi: 10.1007/s10700-012-9125-x. |
[15] |
C. H. Jiang, Y. K. Ma and Y.B An,
An analysis of portfolio selection with background risk, Journal of Banking and Finance, 34 (2010), 3055-3060.
|
[16] |
D. Kahneman and A. Tversky,
Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292.
|
[17] |
B. D. Liu,
Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007.
doi: 10.1007/978-3-540-39987-2. |
[18] |
B. D. Liu,
Why is there a need for uncertainty theory?, Journal of Uncertain Systems, 6 (2012), 3-10.
|
[19] |
B. D. Liu,
Uncertainty Theory, 4nd edition, Springer-Verlag, Berlin, 2014.
doi: 10.1007/978-3-540-39987-2. |
[20] |
H. Markowitz,
Portfolio selection, Journal of Finance, 7 (1952), 77-91.
|
[21] |
H. Markowitz,
Portfolio Selection: Efficient Diversification of Investments, Wiley, New York, 1959. |
[22] |
F. Menoncin,
Optimal portfolio and background risk: an exact and an approximated solution, Insurance Mathematics and Economics, 31 (2002), 249-265.
doi: 10.1016/S0167-6687(02)00154-3. |
[23] |
H. S. Rosen and S. Wu,
Portfolio choice and health status, Journal of Financial Economics, 72 (2004), 457-484.
|
[24] |
R. H. Thaler,
Mental accounting and consumer choice, Marketing Science, 4 (1985), 199-214.
|
[25] |
L. M. Viceira,
Optimal portfolio choice for long-horizon investors with nontradable labor income, Journal of Finance, 56 (2001), 433-470.
|
show all references
References:
[1] |
G. J. Alexander and A. M. Baptista,
Portfolio selection with mental accounts and delegation, Journal of Banking and Finance, 36 (2011), 2637-2656.
|
[2] |
S. Aramonte, M. G. Rodriguez and J. Wu,
Dynamic factor Value-at-Risk for large heteroskedastic portfolios, Journal of Banking and Finance, 37 (2013), 4299-4309.
|
[3] |
A. M. Baptista,
Portfolio selection with mental accounts and background risk, Journal of Banking and Finance, 36 (2012), 968-980.
doi: 10.1016/j.jbankfin.2011.10.015. |
[4] |
R. Castellano and R. Cerqueti,
Mean-variance portfolio selection in presence of infrequently traded stocks, European Journal of Operational Research, 234 (2014), 442-449.
doi: 10.1016/j.ejor.2013.04.024. |
[5] |
S. Das, H. Markowitz, J. Scheid and M. Statman,
Portfolio optimization with mental accounts, Journal of Financial and Quantitative Analysis, 45 (2010), 311-334.
doi: 10.1017/S0022109010000141. |
[6] |
S. Das, H. Markowitz, J. Scheid and M. Statman,
Portfolios for investors who want to reach their goals while staying on the mean-variance efficient frontier, Journal of Wealth Management, (2011), 1-7.
|
[7] |
C. Gollier,
The Economics of Risk and Time, MIT Press, Cambridge, 2001. |
[8] |
X. X. Huang,
Portfolio Analysis: From Probabilistic to Credibilistic and Uncertain Approaches, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-11214-0. |
[9] |
X. X. Huang,
Mean-risk model for uncertain portfolio selection, Fuzzy Optimization and Decision Making, 10 (2011), 71-89.
doi: 10.1007/s10700-010-9094-x. |
[10] |
X. X. Huang,
A risk index model for portfolio selection with returns subject to experts' evaluations, Fuzzy Optimization and Decision Making, 11 (2012), 451-463.
doi: 10.1007/s10700-012-9125-x. |
[11] |
X. X. Huang,
Mean-variance models for portfolio selection subject to experts' estimations, Expert Systems with Applications, 39 (2012), 5887-5893.
doi: 10.1016/j.eswa.2011.11.119. |
[12] |
X. X. Huang and H. Di,
Uncertain portfolio selection with background risk, Applied Mathematics and Computation, 276 (2016), 284-296.
doi: 10.1016/j.amc.2015.12.018. |
[13] |
H. H. Huang and C. P. Wang,
Portfolio selection and portfolio frontier with background risk, North American Journal of Economics and Finance, 26 (2013), 177-196.
doi: 10.1016/j.najef.2013.09.001. |
[14] |
X. X. Huang and H. Y. Ying,
Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations, Economic Modelling, 11 (2012), 451-463.
doi: 10.1007/s10700-012-9125-x. |
[15] |
C. H. Jiang, Y. K. Ma and Y.B An,
An analysis of portfolio selection with background risk, Journal of Banking and Finance, 34 (2010), 3055-3060.
|
[16] |
D. Kahneman and A. Tversky,
Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292.
|
[17] |
B. D. Liu,
Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007.
doi: 10.1007/978-3-540-39987-2. |
[18] |
B. D. Liu,
Why is there a need for uncertainty theory?, Journal of Uncertain Systems, 6 (2012), 3-10.
|
[19] |
B. D. Liu,
Uncertainty Theory, 4nd edition, Springer-Verlag, Berlin, 2014.
doi: 10.1007/978-3-540-39987-2. |
[20] |
H. Markowitz,
Portfolio selection, Journal of Finance, 7 (1952), 77-91.
|
[21] |
H. Markowitz,
Portfolio Selection: Efficient Diversification of Investments, Wiley, New York, 1959. |
[22] |
F. Menoncin,
Optimal portfolio and background risk: an exact and an approximated solution, Insurance Mathematics and Economics, 31 (2002), 249-265.
doi: 10.1016/S0167-6687(02)00154-3. |
[23] |
H. S. Rosen and S. Wu,
Portfolio choice and health status, Journal of Financial Economics, 72 (2004), 457-484.
|
[24] |
R. H. Thaler,
Mental accounting and consumer choice, Marketing Science, 4 (1985), 199-214.
|
[25] |
L. M. Viceira,
Optimal portfolio choice for long-horizon investors with nontradable labor income, Journal of Finance, 56 (2001), 433-470.
|




Security |
Name | Code | Security |
Name | Code |
1 | Shanghaijichang | 600009 | 11 | Shoukaigufen | 600376 |
2 | Nanjingyinhang | 601009 | 12 | Zhejianglongsheng | 600352 |
3 | Bohuizhiye | 600966 | 13 | Chunqiuhangkong | 601021 |
4 | Huaxiayinhang | 600015 | 14 | Beifangxitu | 600111 |
5 | Zhaoshangyinhang | 600035 | 15 | Sananguangdian | 600703 |
6 | Zhongguoshihua | 600028 | 16 | Zhonghangziben | 600705 |
7 | Zhongguoliantong | 600050 | 17 | Anxinxintuo | 600816 |
8 | Tongfanggufen | 600100 | 18 | Pengboshi | 600804 |
9 | Nanshanlvye | 600219 | 19 | Zhongchuanfangwu | 600685 |
10 | Guangdayinhang | 601818 | 20 | Fenghuotongxin | 600498 |
Security |
Name | Code | Security |
Name | Code |
1 | Shanghaijichang | 600009 | 11 | Shoukaigufen | 600376 |
2 | Nanjingyinhang | 601009 | 12 | Zhejianglongsheng | 600352 |
3 | Bohuizhiye | 600966 | 13 | Chunqiuhangkong | 601021 |
4 | Huaxiayinhang | 600015 | 14 | Beifangxitu | 600111 |
5 | Zhaoshangyinhang | 600035 | 15 | Sananguangdian | 600703 |
6 | Zhongguoshihua | 600028 | 16 | Zhonghangziben | 600705 |
7 | Zhongguoliantong | 600050 | 17 | Anxinxintuo | 600816 |
8 | Tongfanggufen | 600100 | 18 | Pengboshi | 600804 |
9 | Nanshanlvye | 600219 | 19 | Zhongchuanfangwu | 600685 |
10 | Guangdayinhang | 601818 | 20 | Fenghuotongxin | 600498 |
Security |
Security |
||
1 | 11 | ||
2 | 12 | ||
3 | 13 | ||
4 | 14 | ||
5 | 15 | ||
6 | 16 | ||
7 | 17 | ||
8 | 18 | ||
9 | 19 | ||
10 | 20 |
Security |
Security |
||
1 | 11 | ||
2 | 12 | ||
3 | 13 | ||
4 | 14 | ||
5 | 15 | ||
6 | 16 | ||
7 | 17 | ||
8 | 18 | ||
9 | 19 | ||
10 | 20 |
![]() |
Retirement | Leisure | Aggregate |
0.9888 | 0.3891 | 0.6889 | |
0.0112 | 0.6109 | 0.3111 | |
Expected return | 6.19% | 11.90% | 9.045% |
![]() |
Retirement | Leisure | Aggregate |
0.9888 | 0.3891 | 0.6889 | |
0.0112 | 0.6109 | 0.3111 | |
Expected return | 6.19% | 11.90% | 9.045% |
![]() |
Retirement | Leisure | Aggregate |
0.7941 | 0.1944 | 0.4943 | |
0.2059 | 0.8056 | 0.5057 | |
Expected return | 8.04% | 13.75% | 10.895% |
![]() |
Retirement | Leisure | Aggregate |
0.7941 | 0.1944 | 0.4943 | |
0.2059 | 0.8056 | 0.5057 | |
Expected return | 8.04% | 13.75% | 10.895% |
![]() |
Retirement | Leisure | Aggregate |
0.9888 | 0.0000 | 0.4926 | |
|
0.0112 | 0.5484 | 0.4144 |
|
0.0000 | 0.4516 | 0.0930 |
Expected return | 6.19% | 20.67% | 13.43% |
![]() |
Retirement | Leisure | Aggregate |
0.9888 | 0.0000 | 0.4926 | |
|
0.0112 | 0.5484 | 0.4144 |
|
0.0000 | 0.4516 | 0.0930 |
Expected return | 6.19% | 20.67% | 13.43% |
-5% | -10% | -15% | -20% | -25% | -30% | |
|
-4.61% | -11.29% | -18.89% | -27.59% | -37.67% | -49.49% |
-5% | -10% | -15% | -20% | -25% | -30% | |
|
-4.61% | -11.29% | -18.89% | -27.59% | -37.67% | -49.49% |
Security |
|
Security |
|
1 | 11 | ||
2 | 12 | ||
3 | 13 | ||
4 | 14 | ||
5 | 15 | ||
6 | 16 | ||
7 | 17 | ||
8 | 18 | ||
9 | 19 | ||
10 | 20 |
Security |
|
Security |
|
1 | 11 | ||
2 | 12 | ||
3 | 13 | ||
4 | 14 | ||
5 | 15 | ||
6 | 16 | ||
7 | 17 | ||
8 | 18 | ||
9 | 19 | ||
10 | 20 |
![]() |
Retirement | Leisure | Aggregate |
0.0939 | 0.1185 | 0.1062 | |
0.1979 | 0.1257 | 0.1618 | |
0.0000 | 0.0022 | 0.0011 | |
0.0000 | 0.0647 | 0.0324 | |
0.0000 | 0.0766 | 0.0383 | |
0.0748 | 0.1222 | 0.0985 | |
0.0000 | 0.0816 | 0.0408 | |
0.0000 | 0.0393 | 0.0197 | |
0.0359 | 0.0694 | 0.0527 | |
0.5976 | 0.2041 | 0.4009 | |
0.0000 | 0.0234 | 0.0117 | |
0.0000 | 0.0229 | 0.0114 | |
0.0000 | 0.0057 | 0.0029 | |
0.0000 | 0.0147 | 0.0074 | |
0.0000 | 0.0287 | 0.0144 | |
Expected return | 6.01% | 10.42% | 8.215% |
![]() |
Retirement | Leisure | Aggregate |
0.0939 | 0.1185 | 0.1062 | |
0.1979 | 0.1257 | 0.1618 | |
0.0000 | 0.0022 | 0.0011 | |
0.0000 | 0.0647 | 0.0324 | |
0.0000 | 0.0766 | 0.0383 | |
0.0748 | 0.1222 | 0.0985 | |
0.0000 | 0.0816 | 0.0408 | |
0.0000 | 0.0393 | 0.0197 | |
0.0359 | 0.0694 | 0.0527 | |
0.5976 | 0.2041 | 0.4009 | |
0.0000 | 0.0234 | 0.0117 | |
0.0000 | 0.0229 | 0.0114 | |
0.0000 | 0.0057 | 0.0029 | |
0.0000 | 0.0147 | 0.0074 | |
0.0000 | 0.0287 | 0.0144 | |
Expected return | 6.01% | 10.42% | 8.215% |
[1] |
Bo Li, Yadong Shu. The skewness for uncertain random variable and application to portfolio selection problem. Journal of Industrial and Management Optimization, 2022, 18 (1) : 457-467. doi: 10.3934/jimo.2020163 |
[2] |
Lan Yi, Zhongfei Li, Duan Li. Multi-period portfolio selection for asset-liability management with uncertain investment horizon. Journal of Industrial and Management Optimization, 2008, 4 (3) : 535-552. doi: 10.3934/jimo.2008.4.535 |
[3] |
Editorial Office. RETRACTION: Peng Zhang, Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection. Journal of Industrial and Management Optimization, 2019, 15 (2) : 537-564. doi: 10.3934/jimo.2018056 |
[4] |
Jiayu Shen, Yuanguo Zhu. An uncertain programming model for single machine scheduling problem with batch delivery. Journal of Industrial and Management Optimization, 2019, 15 (2) : 577-593. doi: 10.3934/jimo.2018058 |
[5] |
Ye Tian, Shucherng Fang, Zhibin Deng, Qingwei Jin. Cardinality constrained portfolio selection problem: A completely positive programming approach. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1041-1056. doi: 10.3934/jimo.2016.12.1041 |
[6] |
Meiling Jin, Yufu Ning, Fengming Liu, Yan Wang, Chunhua Gao. Uncertain KOL selection with advertising videos circulation and KOL selection diversification in advertising promotion. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021219 |
[7] |
Bao Qing Hu, Song Wang. A novel approach in uncertain programming part II: a class of constrained nonlinear programming problems with interval objective functions. Journal of Industrial and Management Optimization, 2006, 2 (4) : 373-385. doi: 10.3934/jimo.2006.2.373 |
[8] |
Le Thi Hoai An, Tran Duc Quynh, Pham Dinh Tao. A DC programming approach for a class of bilevel programming problems and its application in Portfolio Selection. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 167-185. doi: 10.3934/naco.2012.2.167 |
[9] |
Xiulan Wang, Yanfei Lan, Wansheng Tang. An uncertain wage contract model for risk-averse worker under bilateral moral hazard. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1815-1840. doi: 10.3934/jimo.2017020 |
[10] |
Bao Qing Hu, Song Wang. A novel approach in uncertain programming part I: new arithmetic and order relation for interval numbers. Journal of Industrial and Management Optimization, 2006, 2 (4) : 351-371. doi: 10.3934/jimo.2006.2.351 |
[11] |
Shaojun Zhang, Zhong Wan. Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive. Journal of Industrial and Management Optimization, 2012, 8 (2) : 493-505. doi: 10.3934/jimo.2012.8.493 |
[12] |
Yanjun Wang, Kaiji Shen. A new concave reformulation and its application in solving DC programming globally under uncertain environment. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2351-2367. doi: 10.3934/jimo.2019057 |
[13] |
Zutong Wang, Jiansheng Guo, Mingfa Zheng, Youshe Yang. A new approach for uncertain multiobjective programming problem based on $\mathcal{P}_{E}$ principle. Journal of Industrial and Management Optimization, 2015, 11 (1) : 13-26. doi: 10.3934/jimo.2015.11.13 |
[14] |
Linyi Qian, Wei Wang, Rongming Wang. Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model. Journal of Industrial and Management Optimization, 2013, 9 (2) : 411-429. doi: 10.3934/jimo.2013.9.411 |
[15] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial and Management Optimization, 2022, 18 (1) : 511-540. doi: 10.3934/jimo.2020166 |
[16] |
Yahia Zare Mehrjerdi. A novel methodology for portfolio selection in fuzzy multi criteria environment using risk-benefit analysis and fractional stochastic. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 513-535. doi: 10.3934/naco.2021019 |
[17] |
Lifen Jia, Wei Dai. Uncertain spring vibration equation. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2401-2414. doi: 10.3934/jimo.2021073 |
[18] |
Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061 |
[19] |
Zhimin Liu, Shaojian Qu, Hassan Raza, Zhong Wu, Deqiang Qu, Jianhui Du. Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2783-2804. doi: 10.3934/jimo.2020094 |
[20] |
Xiangfeng Yang. Stability in measure for uncertain heat equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6533-6540. doi: 10.3934/dcdsb.2019152 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]