• Previous Article
    Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs
  • JIMO Home
  • This Issue
  • Next Article
    An economic order quantity for deteriorating items with allowable rework of deteriorated products
October  2019, 15(4): 1881-1896. doi: 10.3934/jimo.2018127

Sparse probabilistic Boolean network problems: A partial proximal-type operator splitting method

College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China

* Corresponding author: Zheng Peng

Received  January 2018 Revised  April 2018 Published  August 2018

Fund Project: The work is supported by NSFC grants 11571074, 11726505, and the Natural Science Foundation of FuJian Province grant 2015J01010.

The sparse probabilistic Boolean network (SPBN) model has been applied in various fields of industrial engineering and management. The goal of this model is to find a sparse probability distribution based on a given transition-probability matrix and a set of Boolean networks (BNs). In this paper, a partial proximal-type operator splitting method is proposed to solve a separable minimization problem arising from the study of the SPBN model. All the subproblem-solvers of the proposed method do not involve matrix multiplication, and consequently the proposed method can be used to deal with large-scale problems. The global convergence to a critical point of the proposed method is proved under some mild conditions. Numerical experiments on some real probabilistic Boolean network problems show that the proposed method is effective and efficient compared with some existing methods.

Citation: Kangkang Deng, Zheng Peng, Jianli Chen. Sparse probabilistic Boolean network problems: A partial proximal-type operator splitting method. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1881-1896. doi: 10.3934/jimo.2018127
References:
[1]

Y.-Q. Bai and K.-J. Shen, Alternating direction method of multipliers for $\ell1-\ell 2$ regularized Logistic regression model, Journal of the Operations Research Society of China, 4 (2016), 243-253.  doi: 10.1007/s40305-015-0090-2.  Google Scholar

[2]

S. BoydN. ParikhE. ChuB. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2010), 1-122.   Google Scholar

[3]

M. Caetano and T. Yoneyama, An autocatalytic network model for stock markets, Physica A, 419 (2015), 122-127.  doi: 10.1016/j.physa.2014.10.052.  Google Scholar

[4]

X. ChenW.-K. Ching and X.-S. Chen, Construction of probabilistic boolean networks from a prescribed transition probability matrix: A maximum entropy rate approach, East Asian Journal on Applied Mathematics, 1 (2011), 132-154.  doi: 10.4208/eajam.080310.200910a.  Google Scholar

[5]

X. ChenH. Jiang and W.-K. Ching, Construction of sparse probabilistic boolean networks, East Asian Journal of Applied Mathematics, 2 (2012), 1-18.  doi: 10.4208/eajam.030511.060911a.  Google Scholar

[6]

Y.-H. DaiD.-R. HanX.-M. Yuan and W.-X. Zhang, A sequential updating scheme of Lagrange multiplier for separable convex programming, Mathematics of Computation, 86 (2017), 315-343.  doi: 10.1090/mcom/3104.  Google Scholar

[7]

J. Eckstein and M. Fukushima, Some reformulations and applications of the alternating direction method of multipliers, in Large Scale Optimization: State of the Art Springer US, (1994), 115-134.  Google Scholar

[8]

M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems, Computational Optimization and Applications, 1 (1992), 93-111.  doi: 10.1007/BF00247655.  Google Scholar

[9]

J.-W. GuW.-K. ChingT.-K. Siu and H. Zheng, On modeling credit defaults: A probabilistic Boolean network approach, Risk and Decision Analysis, 4 (2013), 119-129.   Google Scholar

[10]

D.-R. HanX.-M. Yuan and W.-X. Zhang, An augmented Lagrangian based parallel splitting method for separable convex minimization with applications to image processing, Mathematics of Computation, 83 (2014), 2263-2291.  doi: 10.1090/S0025-5718-2014-02829-9.  Google Scholar

[11]

B.-S. He and X.-M. Yuan, Alternating direction method of multipliers for linear programming, Journal of the Operations Research Society of China, 4 (2016), 425-436.  doi: 10.1007/s40305-016-0136-0.  Google Scholar

[12]

B.-S. HeM. Tao and X.-M. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization, 22 (2012), 313-340.  doi: 10.1137/110822347.  Google Scholar

[13]

I. IvanovR. Pal and E.-R. Dougherty, Dynamics preserving size reduction mappings for probabilistic Boolean networks, IEEE Transactions on Signal Processing, 55 (2007), 2310-2322.  doi: 10.1109/TSP.2006.890929.  Google Scholar

[14]

K. Kobayashi and K. Hiraishi, An integer programming approach to optimal control problems in context-sensitive probabilistic Boolean networks, Automatica, 47 (2011), 1260-1264.  doi: 10.1016/j.automatica.2011.01.035.  Google Scholar

[15]

K. Kobayashi and K. Hiraishi, A probabilistic approach to control of complex systems and its application to real-time pricing, Mathematical Problems in Engineering, Volume (2014), Art. ID 906717, 8 pp. doi: 10.1155/2014/906717.  Google Scholar

[16]

K. Kobayashi and K. Hiraishi, Verification of real-time pricing systems based on probabilistic Boolean networks, Applied Mathematics, 7 (2016), Article ID: 70627, 14 pages. doi: 10.4236/am.2016.715146.  Google Scholar

[17]

J. Li, A. Ritter and D. Jurafsky, Inferring user preferences by probabilistic logical reasoning over social networks, preprint, arXiv: 1411.2679. Google Scholar

[18]

R. LiangY. Qiu and W.-K. Ching, Construction of probabilistic Boolean network for credit default data, Computational Sciences and Optimization (CSO), 2014 Seventh International Joint Conference on. IEEE, (2014), 11-15.   Google Scholar

[19]

2003. Available from: http://code.google.com/p/pbn-matlab-toolbox. Google Scholar

[20]

B.-K. Natraajan, Sparse approximation to linear systems, SIAM Journal on Computing, 24 (1995), 227-234.  doi: 10.1137/S0097539792240406.  Google Scholar

[21]

Z. Peng and D.-H. Wu, A partial parallel splitting augmented Lagrangian method for solving constrained matrix optimization problems, Computers and Mathematics with Applications, 60 (2010), 1515-1524.  doi: 10.1016/j.camwa.2010.06.035.  Google Scholar

[22]

B.-E. RhoadesS. SessaM.-S. Khan and M. Swaleh, On fixed points of asymptotically regular mappings, Journal of the Australian Mathematical Society, 43 (1987), 328-346.  doi: 10.1017/S1446788700029621.  Google Scholar

[23]

I. ShmulevichE.-R. DoughertyS. Kim and W. Zhang, Probabilistic Boolean networks: A rule- based uncertainty model for gene regulatory networks, Bioinformatics, 18 (2002), 261-274.  doi: 10.1093/bioinformatics/18.2.261.  Google Scholar

[24]

I. ShmulevichE-R. Dougherty and W. Zhang, From Boolean to probabilistic Boolean networks as models of genetic regulatory networks, Proceedings of the IEEE, 90 (2002), 1778-1792.  doi: 10.1109/JPROC.2002.804686.  Google Scholar

[25]

I. ShmulevichE.-R. Dougherty and W. Zhang, Gene perturbation and intervention in probabilistic Boolean networks, Bioinformatics, 18 (2002), 1319-1331.  doi: 10.1093/bioinformatics/18.10.1319.  Google Scholar

[26]

B. TianX.-Q. Yang and K.-W. Meng, An interior-point $\ell_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization, Journal of Industrial & Management Optimization, 12 (2016), 949-973.  doi: 10.3934/jimo.2016.12.949.  Google Scholar

[27]

X.-F. Wang and G. Chen, Complex networks: Small-world, scale-free and beyond, IEEE Circuits and Systems Magazine, 3 (2003), 6-20.   Google Scholar

[28]

Z.-M. WuX.-J. Cai and D.-R. Han, Linearized block-wise alternating direction method of multipliers for multiple-block convex programming, Journal of Industrial & Management Optimization, 14 (2018), 833-855.  doi: 10.3934/jimo.2017078.  Google Scholar

[29]

M.-H. Xu, Proximal alternating directions method for structured variational inequalities, Journal of Optimization Theory and Applications, 134 (2007), 107-117.  doi: 10.1007/s10957-007-9192-2.  Google Scholar

[30]

Z.-B. XuH. GuoY. Wang and H. Zhang, The representation of $\ell_{\frac{1}{2}}$ regularizer among $\ell_q (0 < q < 1)$ regularizer: an experimental study based on phase diagram, Acta Automatica Sinica, 38 (2012), 1225-1228.  doi: 10.3724/SP.J.1004.2012.01225.  Google Scholar

[31]

Z.-B. XuX.-Y. ChangF.-M. Xu and H. Zhang, $\ell_{\frac{1}{2}}$ regularization: a thresholding representation theory and a fast slover, IEEE Transactions on Neural Networks and Learning Systems, 23 (2012), 1013-1027.   Google Scholar

[32]

F.-M. Xu, Y.-H. Dai, Z.-H. Zhao and Z.-B. Xu, Efficient projected gradient methods for a class of $\ell_0$ constrained optimization problems, Mathematical Programming, to appear. Google Scholar

[33]

J. YangY.-Q. DaiZ. PengJ.-P. Zhuang and W.-X. Zhu, A homotopy alternating direction method of multipliers for linearly constrained separable convex optimization, Journal of the Operations Research Society of China, 5 (2017), 271-290.  doi: 10.1007/s40305-017-0170-6.  Google Scholar

[34]

J. ZengS. LinY. Wang and Z.-B. Xu, $\ell_\frac{1}{2}$ Regularization: convergence of iterative half thresholding algorithm, IEEE Transactions on Signal Processing, 62 (2014), 2317-2329.  doi: 10.1109/TSP.2014.2309076.  Google Scholar

[35]

K.-Z. Zhang and L.-Z. Zhang, Controllability of probabilistic Boolean control networks with time-variant delays in states, Science China: Information Sciences, 59(9)(2016), 092204, 10pp. doi: 10.1007/s11432-015-5423-6.  Google Scholar

show all references

References:
[1]

Y.-Q. Bai and K.-J. Shen, Alternating direction method of multipliers for $\ell1-\ell 2$ regularized Logistic regression model, Journal of the Operations Research Society of China, 4 (2016), 243-253.  doi: 10.1007/s40305-015-0090-2.  Google Scholar

[2]

S. BoydN. ParikhE. ChuB. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2010), 1-122.   Google Scholar

[3]

M. Caetano and T. Yoneyama, An autocatalytic network model for stock markets, Physica A, 419 (2015), 122-127.  doi: 10.1016/j.physa.2014.10.052.  Google Scholar

[4]

X. ChenW.-K. Ching and X.-S. Chen, Construction of probabilistic boolean networks from a prescribed transition probability matrix: A maximum entropy rate approach, East Asian Journal on Applied Mathematics, 1 (2011), 132-154.  doi: 10.4208/eajam.080310.200910a.  Google Scholar

[5]

X. ChenH. Jiang and W.-K. Ching, Construction of sparse probabilistic boolean networks, East Asian Journal of Applied Mathematics, 2 (2012), 1-18.  doi: 10.4208/eajam.030511.060911a.  Google Scholar

[6]

Y.-H. DaiD.-R. HanX.-M. Yuan and W.-X. Zhang, A sequential updating scheme of Lagrange multiplier for separable convex programming, Mathematics of Computation, 86 (2017), 315-343.  doi: 10.1090/mcom/3104.  Google Scholar

[7]

J. Eckstein and M. Fukushima, Some reformulations and applications of the alternating direction method of multipliers, in Large Scale Optimization: State of the Art Springer US, (1994), 115-134.  Google Scholar

[8]

M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems, Computational Optimization and Applications, 1 (1992), 93-111.  doi: 10.1007/BF00247655.  Google Scholar

[9]

J.-W. GuW.-K. ChingT.-K. Siu and H. Zheng, On modeling credit defaults: A probabilistic Boolean network approach, Risk and Decision Analysis, 4 (2013), 119-129.   Google Scholar

[10]

D.-R. HanX.-M. Yuan and W.-X. Zhang, An augmented Lagrangian based parallel splitting method for separable convex minimization with applications to image processing, Mathematics of Computation, 83 (2014), 2263-2291.  doi: 10.1090/S0025-5718-2014-02829-9.  Google Scholar

[11]

B.-S. He and X.-M. Yuan, Alternating direction method of multipliers for linear programming, Journal of the Operations Research Society of China, 4 (2016), 425-436.  doi: 10.1007/s40305-016-0136-0.  Google Scholar

[12]

B.-S. HeM. Tao and X.-M. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization, 22 (2012), 313-340.  doi: 10.1137/110822347.  Google Scholar

[13]

I. IvanovR. Pal and E.-R. Dougherty, Dynamics preserving size reduction mappings for probabilistic Boolean networks, IEEE Transactions on Signal Processing, 55 (2007), 2310-2322.  doi: 10.1109/TSP.2006.890929.  Google Scholar

[14]

K. Kobayashi and K. Hiraishi, An integer programming approach to optimal control problems in context-sensitive probabilistic Boolean networks, Automatica, 47 (2011), 1260-1264.  doi: 10.1016/j.automatica.2011.01.035.  Google Scholar

[15]

K. Kobayashi and K. Hiraishi, A probabilistic approach to control of complex systems and its application to real-time pricing, Mathematical Problems in Engineering, Volume (2014), Art. ID 906717, 8 pp. doi: 10.1155/2014/906717.  Google Scholar

[16]

K. Kobayashi and K. Hiraishi, Verification of real-time pricing systems based on probabilistic Boolean networks, Applied Mathematics, 7 (2016), Article ID: 70627, 14 pages. doi: 10.4236/am.2016.715146.  Google Scholar

[17]

J. Li, A. Ritter and D. Jurafsky, Inferring user preferences by probabilistic logical reasoning over social networks, preprint, arXiv: 1411.2679. Google Scholar

[18]

R. LiangY. Qiu and W.-K. Ching, Construction of probabilistic Boolean network for credit default data, Computational Sciences and Optimization (CSO), 2014 Seventh International Joint Conference on. IEEE, (2014), 11-15.   Google Scholar

[19]

2003. Available from: http://code.google.com/p/pbn-matlab-toolbox. Google Scholar

[20]

B.-K. Natraajan, Sparse approximation to linear systems, SIAM Journal on Computing, 24 (1995), 227-234.  doi: 10.1137/S0097539792240406.  Google Scholar

[21]

Z. Peng and D.-H. Wu, A partial parallel splitting augmented Lagrangian method for solving constrained matrix optimization problems, Computers and Mathematics with Applications, 60 (2010), 1515-1524.  doi: 10.1016/j.camwa.2010.06.035.  Google Scholar

[22]

B.-E. RhoadesS. SessaM.-S. Khan and M. Swaleh, On fixed points of asymptotically regular mappings, Journal of the Australian Mathematical Society, 43 (1987), 328-346.  doi: 10.1017/S1446788700029621.  Google Scholar

[23]

I. ShmulevichE.-R. DoughertyS. Kim and W. Zhang, Probabilistic Boolean networks: A rule- based uncertainty model for gene regulatory networks, Bioinformatics, 18 (2002), 261-274.  doi: 10.1093/bioinformatics/18.2.261.  Google Scholar

[24]

I. ShmulevichE-R. Dougherty and W. Zhang, From Boolean to probabilistic Boolean networks as models of genetic regulatory networks, Proceedings of the IEEE, 90 (2002), 1778-1792.  doi: 10.1109/JPROC.2002.804686.  Google Scholar

[25]

I. ShmulevichE.-R. Dougherty and W. Zhang, Gene perturbation and intervention in probabilistic Boolean networks, Bioinformatics, 18 (2002), 1319-1331.  doi: 10.1093/bioinformatics/18.10.1319.  Google Scholar

[26]

B. TianX.-Q. Yang and K.-W. Meng, An interior-point $\ell_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization, Journal of Industrial & Management Optimization, 12 (2016), 949-973.  doi: 10.3934/jimo.2016.12.949.  Google Scholar

[27]

X.-F. Wang and G. Chen, Complex networks: Small-world, scale-free and beyond, IEEE Circuits and Systems Magazine, 3 (2003), 6-20.   Google Scholar

[28]

Z.-M. WuX.-J. Cai and D.-R. Han, Linearized block-wise alternating direction method of multipliers for multiple-block convex programming, Journal of Industrial & Management Optimization, 14 (2018), 833-855.  doi: 10.3934/jimo.2017078.  Google Scholar

[29]

M.-H. Xu, Proximal alternating directions method for structured variational inequalities, Journal of Optimization Theory and Applications, 134 (2007), 107-117.  doi: 10.1007/s10957-007-9192-2.  Google Scholar

[30]

Z.-B. XuH. GuoY. Wang and H. Zhang, The representation of $\ell_{\frac{1}{2}}$ regularizer among $\ell_q (0 < q < 1)$ regularizer: an experimental study based on phase diagram, Acta Automatica Sinica, 38 (2012), 1225-1228.  doi: 10.3724/SP.J.1004.2012.01225.  Google Scholar

[31]

Z.-B. XuX.-Y. ChangF.-M. Xu and H. Zhang, $\ell_{\frac{1}{2}}$ regularization: a thresholding representation theory and a fast slover, IEEE Transactions on Neural Networks and Learning Systems, 23 (2012), 1013-1027.   Google Scholar

[32]

F.-M. Xu, Y.-H. Dai, Z.-H. Zhao and Z.-B. Xu, Efficient projected gradient methods for a class of $\ell_0$ constrained optimization problems, Mathematical Programming, to appear. Google Scholar

[33]

J. YangY.-Q. DaiZ. PengJ.-P. Zhuang and W.-X. Zhu, A homotopy alternating direction method of multipliers for linearly constrained separable convex optimization, Journal of the Operations Research Society of China, 5 (2017), 271-290.  doi: 10.1007/s40305-017-0170-6.  Google Scholar

[34]

J. ZengS. LinY. Wang and Z.-B. Xu, $\ell_\frac{1}{2}$ Regularization: convergence of iterative half thresholding algorithm, IEEE Transactions on Signal Processing, 62 (2014), 2317-2329.  doi: 10.1109/TSP.2014.2309076.  Google Scholar

[35]

K.-Z. Zhang and L.-Z. Zhang, Controllability of probabilistic Boolean control networks with time-variant delays in states, Science China: Information Sciences, 59(9)(2016), 092204, 10pp. doi: 10.1007/s11432-015-5423-6.  Google Scholar

Figure 1.  The probability distribution $x$ for the case $j = 2$ and $l = 2$
Figure 2.  The probability distribution $x$ for the case $j = 2$ and $l = 3$
Figure 3.  The probability distribution $x$ for the case $j = 3$ and 1024 BNs
Figure 4.  The probability distribution $x$ for the case $j = 3$ and 2048 BNs
Figure 5.  The probability distribution $x$ for the case $j = 4$ and 4096 BNs
Table 1.  The computational results of Algorithm 1 with different stopping error
Stopping error $\varepsilon$ $10^{-2}$ $10^{-3} $ $5\times 10^{-4}$ $10^{-4} $ $5\times 10^{-5} $ $10^{-5}$
Total iteration number $k$ 97 260 267 520 562 722
Identified major BNs 104
118
189 118 118 118 118 118
358 360 360 360 360 360
360 395 395 395 395 395
376 594 594 594 594 594
395 836 836 836 836 836
594 911 911 911 911 911
836 939 939 939 939 939
911
939
Stopping error $\varepsilon$ $10^{-2}$ $10^{-3} $ $5\times 10^{-4}$ $10^{-4} $ $5\times 10^{-5} $ $10^{-5}$
Total iteration number $k$ 97 260 267 520 562 722
Identified major BNs 104
118
189 118 118 118 118 118
358 360 360 360 360 360
360 395 395 395 395 395
376 594 594 594 594 594
395 836 836 836 836 836
594 911 911 911 911 911
836 939 939 939 939 939
911
939
[1]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[2]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[3]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[4]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[5]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[6]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[7]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[10]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[11]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[12]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[13]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[14]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[15]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[16]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[17]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[18]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[19]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[20]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (141)
  • HTML views (1250)
  • Cited by (0)

Other articles
by authors

[Back to Top]