# American Institute of Mathematical Sciences

October  2019, 15(4): 1897-1920. doi: 10.3934/jimo.2018128

## Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs

 Laboratoire MISI, Faculté des Sciences et Techniques, Univ. Hassan 1, Settat, 26000, Morocco

* Corresponding author: Ahmed Roubi

The authors would like to thank a referee for his valuable comments

Received  January 2018 Revised  March 2018 Published  October 2019 Early access  August 2018

In this work, we propose an approximating scheme based on the proximal point algorithm, for solving generalized fractional programs (GFP) by their continuous reformulation, also known to as partial dual counterparts of GFP. Bundle dual algorithms are then derived from this scheme. We prove the convergence and the rate of convergence of these algorithms. As for dual algorithms, the proposed methods generate a sequence of values that converges from below to the minimal value of $(P)$, and a sequence of approximate solutions that converges to a solution of the dual problem. For certain classes of problems, the convergence is at least linear.

Citation: Hssaine Boualam, Ahmed Roubi. Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1897-1920. doi: 10.3934/jimo.2018128
##### References:
 [1] A. Addou and A. Roubi, Proximal-type methods with generalized Bregman functions and applications to generalized fractional programming, Optimization, 59 (2010), 1085-1105.  doi: 10.1080/02331930903395857. [2] S. Addoune, M. El Haffari and A. Roubi, A proximal point algorithm for generalized fractional programs, Optimization, 66 (2017), 1495-1517.  doi: 10.1080/02331934.2017.1338698. [3] A. I. Barros, J. B. G. Frenk, S. Schaible and S. Zhang, A new algorithm for generalized fractional programs, Mathematical Programming, 72 (1996), 147-175.  doi: 10.1007/BF02592087. [4] A. I. Barros, J. B. G. Frenk, S. Schaible and S. Zhang, Using duality to solve generalized fractional programming problems, Journal of Global Optimization, 8 (1996), 139-170.  doi: 10.1007/BF00138690. [5] C. R. Bector, S. Chandra and M. K. Bector, Generalized fractional programming duality: A parametric approach, Journal of Optimization Theory and Applications, 60 (1989), 243-260.  doi: 10.1007/BF00940006. [6] J. C. Bernard and J. A. Ferland, Convergence of interval-type algorithms for generalized fractional programming, Mathematical Programming, 43 (1989), 349-363.  doi: 10.1007/BF01582298. [7] K. Boufi and A. Roubi, Prox-regularization of the dual method of centers for generalized fractional programs, To appear in Optimization Methods and Software. doi: 10.1080/10556788.2017.1392520. [8] K. Boufi and A. Roubi, Dual method of centers for solving generalized fractional programs, Journal of Global Optimization, 69 (2017), 387-426.  doi: 10.1007/s10898-017-0523-z. [9] M. C. Burke and J. V. Ferris, Weak sharp minima in mathematical programming, SIAM Journal on Control and Optimization, 31 (1993), 1340-1359.  doi: 10.1137/0331063. [10] R. Correa and C. Lemaréchal, Convergence of some algorithms for convex minimization, Mathematical Programming, 62 (1993), 261-275.  doi: 10.1007/BF01585170. [11] J. P. Crouzeix and J. A. Ferland, Algorithms for generalized fractional programming, Mathematical Programming, 52 (1991), 191-207.  doi: 10.1007/BF01582887. [12] J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming, Mathematical Programming, 27 (1983), 342-354.  doi: 10.1007/BF02591908. [13] J. P. Crouzeix, J. A. Ferland and S. Schaible, An algorithm for generalized fractional programs, Journal of Optimization Theory and Applications, 47 (1985), 35-49.  doi: 10.1007/BF00941314. [14] J. P. Crouzeix, J. A. Ferland and S. Schaible, A note on an algorithm for generalized fractional programs, Journal of Optimization Theory and Applications, 50 (1986), 183-187.  doi: 10.1007/BF00938484. [15] M. El Haffari and A. Roubi, Convergence of a proximal algorithm for solving the dual of a generalized fractional program, RAIRO-Oper. Res., 51 (2017), 985-1004.  doi: 10.1051/ro/2017004. [16] M. El Haffari and A. Roubi, Prox-dual regularization algorithm for generalized fractional programs, Journal of Industrial and Management Optimization, 13 (2017), 1991-2013.  doi: 10.3934/jimo.2017028. [17] J. E. Falk, Maximization of signal-to-noise ratio in an optical filter, SIAM Appl. Math., 17 (1969), 582-592.  doi: 10.1137/0117055. [18] J. B. G. Frenk and S. Schaible, Fractional Programming, ERIM Report Series, Reference No. ERS-2004-074-LIS, 2004. [19] M. Fukushima, A descent algorithm for nonsmooth convex optimization, Mathematical Programming, 30 (1984), 163-175.  doi: 10.1007/BF02591883. [20] M. Gugat, Prox-regularization methods for generalized fractional programming, Journal of Optimization Theory and Applications, 99 (1998), 691-722.  doi: 10.1023/A:1021759318653. [21] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM Journal on Control and Optimization, 29 (1991), 403-419.  doi: 10.1137/0329022. [22] J. B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II, Springer-Verlag, 1993. doi: 10.1007/978-3-662-06409-2. [23] R. Jagannathan and S. Schaible, Duality in generalized fractional programming via Farkas lemma, Journal of Optimization Theory and Applications, 41 (1983), 417-424.  doi: 10.1007/BF00935361. [24] K. C. Kiwiel, An aggregate subgradient method for nonsmooth convex minimization, Mathematical Programming, 27 (1983), 320-341.  doi: 10.1007/BF02591907. [25] K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1985. doi: 10.1007/BFb0074500. [26] K. C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization, Mathematical Programming, 46 (1990), 105-122.  doi: 10.1007/BF01585731. [27] C. Lemaréchal, Bundle methods in nonsmooth optimization, in Nonsmooth Optimization (eds. C. Lemaréchal and R. Mifflin), Pergamon Press, Oxford, 3 (1978), 79-102. [28] C. Lemaréchal, Constructing bundle methods for convex optimization, in Fermat Days 85: Mathematics for Optimization (eds. J. B. Hiriart-Urruty), North-Holland, Amsterdam, (1986), 201-240. doi: 10.1016/S0304-0208(08)72400-9. [29] M. Mäkelä, Survey of bundle methods for nonsmooth optimization, Optimization Methods and Software, 17 (2002), 1-29.  doi: 10.1080/10556780290027828. [30] B. Martinet, Régularisation d'inéquations variationnelles par approximation successives, Revue Française d'Informatique et Recherche Opérationnelle, 4 (1970), 154-158. [31] R. Mifflin, An algorithm for constrained optimization with semismooth functions, Math. Oper. Res., 2 (1977), 191-207.  doi: 10.1287/moor.2.2.191. [32] R. Mifflin, A modification and extension of Lemaréchal's algorithm for nonsmooth minimization, Math. Programming Stud., 17 (1982), 77-90.  doi: 10.1007/BFb0120960. [33] J. J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965), 273-299. [34] A. Nagih and G. Plateau, Problèmes fractionnaires : tour d'horizon sur les applications et méthodes de résolution, RAIRO - Operations Research, 33 (1999), 383-419.  doi: 10.1051/ro:1999118. [35] B. T. Polyak, Introduction to Optimization, Translations Series in Mathematics and Engineering, Optimization Software, Inc. Publications Division, New York, 1987. [36] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N. J., 1970. [37] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14 (1976), 877-898.  doi: 10.1137/0314056. [38] A. Roubi, Method of centers for generalized fractional programming, Journal of Optimization Theory and Applications, 107 (2000), 123-143.  doi: 10.1023/A:1004660917684. [39] A. Roubi, Convergence of prox-regularization methods for generalized fractional programming, RAIRO-Oper. Res., 36 (2002), 73-94.  doi: 10.1051/ro:2002006. [40] S. Schaible, Fractional programming, in Handbook Global Optimization (eds. R. Horst, PM Pardalos), Kluwer, Dordrecht, 2 (1995), 495-608.  doi: 10.1007/978-1-4615-2025-2. [41] H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results, SIAM Journal on Optimization, 2 (1992), 121-152.  doi: 10.1137/0802008. [42] M. Sion, On general minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.  doi: 10.2140/pjm.1958.8.171. [43] J. J. Strodiot, J. P. Crouzeix, J. A. Ferland and V. H. Nguyen, An inexact proximal point method for solving generalized fractional programs, Journal of Global Optimization, 42 (2008), 121-138.  doi: 10.1007/s10898-007-9270-x.

show all references

The authors would like to thank a referee for his valuable comments

##### References:
 [1] A. Addou and A. Roubi, Proximal-type methods with generalized Bregman functions and applications to generalized fractional programming, Optimization, 59 (2010), 1085-1105.  doi: 10.1080/02331930903395857. [2] S. Addoune, M. El Haffari and A. Roubi, A proximal point algorithm for generalized fractional programs, Optimization, 66 (2017), 1495-1517.  doi: 10.1080/02331934.2017.1338698. [3] A. I. Barros, J. B. G. Frenk, S. Schaible and S. Zhang, A new algorithm for generalized fractional programs, Mathematical Programming, 72 (1996), 147-175.  doi: 10.1007/BF02592087. [4] A. I. Barros, J. B. G. Frenk, S. Schaible and S. Zhang, Using duality to solve generalized fractional programming problems, Journal of Global Optimization, 8 (1996), 139-170.  doi: 10.1007/BF00138690. [5] C. R. Bector, S. Chandra and M. K. Bector, Generalized fractional programming duality: A parametric approach, Journal of Optimization Theory and Applications, 60 (1989), 243-260.  doi: 10.1007/BF00940006. [6] J. C. Bernard and J. A. Ferland, Convergence of interval-type algorithms for generalized fractional programming, Mathematical Programming, 43 (1989), 349-363.  doi: 10.1007/BF01582298. [7] K. Boufi and A. Roubi, Prox-regularization of the dual method of centers for generalized fractional programs, To appear in Optimization Methods and Software. doi: 10.1080/10556788.2017.1392520. [8] K. Boufi and A. Roubi, Dual method of centers for solving generalized fractional programs, Journal of Global Optimization, 69 (2017), 387-426.  doi: 10.1007/s10898-017-0523-z. [9] M. C. Burke and J. V. Ferris, Weak sharp minima in mathematical programming, SIAM Journal on Control and Optimization, 31 (1993), 1340-1359.  doi: 10.1137/0331063. [10] R. Correa and C. Lemaréchal, Convergence of some algorithms for convex minimization, Mathematical Programming, 62 (1993), 261-275.  doi: 10.1007/BF01585170. [11] J. P. Crouzeix and J. A. Ferland, Algorithms for generalized fractional programming, Mathematical Programming, 52 (1991), 191-207.  doi: 10.1007/BF01582887. [12] J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming, Mathematical Programming, 27 (1983), 342-354.  doi: 10.1007/BF02591908. [13] J. P. Crouzeix, J. A. Ferland and S. Schaible, An algorithm for generalized fractional programs, Journal of Optimization Theory and Applications, 47 (1985), 35-49.  doi: 10.1007/BF00941314. [14] J. P. Crouzeix, J. A. Ferland and S. Schaible, A note on an algorithm for generalized fractional programs, Journal of Optimization Theory and Applications, 50 (1986), 183-187.  doi: 10.1007/BF00938484. [15] M. El Haffari and A. Roubi, Convergence of a proximal algorithm for solving the dual of a generalized fractional program, RAIRO-Oper. Res., 51 (2017), 985-1004.  doi: 10.1051/ro/2017004. [16] M. El Haffari and A. Roubi, Prox-dual regularization algorithm for generalized fractional programs, Journal of Industrial and Management Optimization, 13 (2017), 1991-2013.  doi: 10.3934/jimo.2017028. [17] J. E. Falk, Maximization of signal-to-noise ratio in an optical filter, SIAM Appl. Math., 17 (1969), 582-592.  doi: 10.1137/0117055. [18] J. B. G. Frenk and S. Schaible, Fractional Programming, ERIM Report Series, Reference No. ERS-2004-074-LIS, 2004. [19] M. Fukushima, A descent algorithm for nonsmooth convex optimization, Mathematical Programming, 30 (1984), 163-175.  doi: 10.1007/BF02591883. [20] M. Gugat, Prox-regularization methods for generalized fractional programming, Journal of Optimization Theory and Applications, 99 (1998), 691-722.  doi: 10.1023/A:1021759318653. [21] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM Journal on Control and Optimization, 29 (1991), 403-419.  doi: 10.1137/0329022. [22] J. B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II, Springer-Verlag, 1993. doi: 10.1007/978-3-662-06409-2. [23] R. Jagannathan and S. Schaible, Duality in generalized fractional programming via Farkas lemma, Journal of Optimization Theory and Applications, 41 (1983), 417-424.  doi: 10.1007/BF00935361. [24] K. C. Kiwiel, An aggregate subgradient method for nonsmooth convex minimization, Mathematical Programming, 27 (1983), 320-341.  doi: 10.1007/BF02591907. [25] K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1985. doi: 10.1007/BFb0074500. [26] K. C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization, Mathematical Programming, 46 (1990), 105-122.  doi: 10.1007/BF01585731. [27] C. Lemaréchal, Bundle methods in nonsmooth optimization, in Nonsmooth Optimization (eds. C. Lemaréchal and R. Mifflin), Pergamon Press, Oxford, 3 (1978), 79-102. [28] C. Lemaréchal, Constructing bundle methods for convex optimization, in Fermat Days 85: Mathematics for Optimization (eds. J. B. Hiriart-Urruty), North-Holland, Amsterdam, (1986), 201-240. doi: 10.1016/S0304-0208(08)72400-9. [29] M. Mäkelä, Survey of bundle methods for nonsmooth optimization, Optimization Methods and Software, 17 (2002), 1-29.  doi: 10.1080/10556780290027828. [30] B. Martinet, Régularisation d'inéquations variationnelles par approximation successives, Revue Française d'Informatique et Recherche Opérationnelle, 4 (1970), 154-158. [31] R. Mifflin, An algorithm for constrained optimization with semismooth functions, Math. Oper. Res., 2 (1977), 191-207.  doi: 10.1287/moor.2.2.191. [32] R. Mifflin, A modification and extension of Lemaréchal's algorithm for nonsmooth minimization, Math. Programming Stud., 17 (1982), 77-90.  doi: 10.1007/BFb0120960. [33] J. J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965), 273-299. [34] A. Nagih and G. Plateau, Problèmes fractionnaires : tour d'horizon sur les applications et méthodes de résolution, RAIRO - Operations Research, 33 (1999), 383-419.  doi: 10.1051/ro:1999118. [35] B. T. Polyak, Introduction to Optimization, Translations Series in Mathematics and Engineering, Optimization Software, Inc. Publications Division, New York, 1987. [36] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N. J., 1970. [37] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14 (1976), 877-898.  doi: 10.1137/0314056. [38] A. Roubi, Method of centers for generalized fractional programming, Journal of Optimization Theory and Applications, 107 (2000), 123-143.  doi: 10.1023/A:1004660917684. [39] A. Roubi, Convergence of prox-regularization methods for generalized fractional programming, RAIRO-Oper. Res., 36 (2002), 73-94.  doi: 10.1051/ro:2002006. [40] S. Schaible, Fractional programming, in Handbook Global Optimization (eds. R. Horst, PM Pardalos), Kluwer, Dordrecht, 2 (1995), 495-608.  doi: 10.1007/978-1-4615-2025-2. [41] H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results, SIAM Journal on Optimization, 2 (1992), 121-152.  doi: 10.1137/0802008. [42] M. Sion, On general minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.  doi: 10.2140/pjm.1958.8.171. [43] J. J. Strodiot, J. P. Crouzeix, J. A. Ferland and V. H. Nguyen, An inexact proximal point method for solving generalized fractional programs, Journal of Global Optimization, 42 (2008), 121-138.  doi: 10.1007/s10898-007-9270-x.
Results for Algorithm 5 and Algorithm [43] with $n = 10$, $m = 10$ and $p = 5$.
 $\bf{n=10}$ $\bf{m=10}$ $\bf{p=5}$ Algo 5 Algo [43] $\bf{ \pmb{\mathsf{ β}}_k}$ $c$ 0.01 0.05 0.1 0.5 0.9 0.01 0.05 0.1 0.5 0.9 0.01 Av. IT 13.1 11.2 10.6 9.7 6.8 8.1 8.8 7.8 5.8 4.6 Av. QP 137.7 102 95.8 89.8 73.6 81.3 88.3 78.7 62.6 48.8 Av. T(s) 21.6 14.6 13.7 13.5 11.7 12 12.7 11.6 10.4 8.2 0.5 Av. IT 13.1 12.9 12.2 9.9 7.2 8.7 8.8 7.4 6 4.5 Av. QP 81.6 84.5 75.7 66.2 56.4 67.4 69.6 55 47.9 40 Av. T(s) 8.8 9.6 8.8 8.4 7.3 8.8 9.1 7.7 7.3 6.3 1 Av. IT 13.8 13 10.7 10.3 7.1 8.6 7.6 7.4 5.3 4.7 Av. QP 76.2 66.5 53.1 60.6 47.1 53.9 50.1 51.4 38.4 37.1 Av. T(s) 8.3 7.1 5.5 7.7 5.7 6.8 6.6 6.8 5.5 5.6 5 Av. IT 12.8 11.3 10.8 12.1 10.5 9.4 8.3 8.4 9 8.3 Av. QP 43.6 37.6 34.8 45.5 48.1 39.7 35.7 36.2 46 47.7 Av. T(s) 4.5 3.9 3.6 4.6 4.9 4.5 4.2 4.3 5.4 5.7 10 Av. IT 12.5 11.8 11.5 12 13.3 12.8 12.3 11.9 13.4 13.4 Av. QP 34.7 30 27.7 34.1 49.8 45.1 42.7 41.7 57.2 61.3 Av. T(s) 3.9 3.3 3.1 3.7 5 4.4 4.2 4.2 5.5 6.2
 $\bf{n=10}$ $\bf{m=10}$ $\bf{p=5}$ Algo 5 Algo [43] $\bf{ \pmb{\mathsf{ β}}_k}$ $c$ 0.01 0.05 0.1 0.5 0.9 0.01 0.05 0.1 0.5 0.9 0.01 Av. IT 13.1 11.2 10.6 9.7 6.8 8.1 8.8 7.8 5.8 4.6 Av. QP 137.7 102 95.8 89.8 73.6 81.3 88.3 78.7 62.6 48.8 Av. T(s) 21.6 14.6 13.7 13.5 11.7 12 12.7 11.6 10.4 8.2 0.5 Av. IT 13.1 12.9 12.2 9.9 7.2 8.7 8.8 7.4 6 4.5 Av. QP 81.6 84.5 75.7 66.2 56.4 67.4 69.6 55 47.9 40 Av. T(s) 8.8 9.6 8.8 8.4 7.3 8.8 9.1 7.7 7.3 6.3 1 Av. IT 13.8 13 10.7 10.3 7.1 8.6 7.6 7.4 5.3 4.7 Av. QP 76.2 66.5 53.1 60.6 47.1 53.9 50.1 51.4 38.4 37.1 Av. T(s) 8.3 7.1 5.5 7.7 5.7 6.8 6.6 6.8 5.5 5.6 5 Av. IT 12.8 11.3 10.8 12.1 10.5 9.4 8.3 8.4 9 8.3 Av. QP 43.6 37.6 34.8 45.5 48.1 39.7 35.7 36.2 46 47.7 Av. T(s) 4.5 3.9 3.6 4.6 4.9 4.5 4.2 4.3 5.4 5.7 10 Av. IT 12.5 11.8 11.5 12 13.3 12.8 12.3 11.9 13.4 13.4 Av. QP 34.7 30 27.7 34.1 49.8 45.1 42.7 41.7 57.2 61.3 Av. T(s) 3.9 3.3 3.1 3.7 5 4.4 4.2 4.2 5.5 6.2
Results for Algorithm 5 and Algorithm [43] with $n = 20$, $m = 10$ and $p = 10$.
 $\bf{n=20}$ $\bf{m=10}$ $\bf{p=10}$ Algo 5 Algo [43] $\bf{ \pmb{\mathsf{ β}}_k}$ $c$ 0.01 0.05 0.1 0.5 0.9 0.01 0.05 0.1 0.5 0.9 0.01 Av. IT 13.3 12.9 11.5 10.8 8.8 7.9 8.4 7.5 5.2 4.4 Av. QP 119.7 117.4 90.9 95.3 87.9 97.8 104.2 93.9 64.6 59.4 Av. T(s) 34.2 33.9 25.7 27.5 25.2 16.5 17.7 16.3 12 11.4 0.5 Av. IT 12.6 12.4 11.2 12.3 9.5 8 8.8 8.1 5.3 4.5 Av. QP 71.3 65.5 59.6 71.8 64.1 78.1 93.5 81.6 56.4 47.2 Av. T(s) 17.2 16.7 15 19.5 17.5 12.4 14.6 13.1 10 8.9 1 Av. IT 13.4 13.1 13.1 12.3 10.4 9.6 8.8 8.2 5.2 4.9 Av. QP 64.2 63.6 59.3 59.4 58.5 83.2 75 72.7 50.9 43 Av. T(s) 16.6 16.5 15.5 16.6 16 13.1 11.8 11.5 9 7.8 5 Av. IT 19.5 17.3 16.7 17.2 20.3 9.5 9.3 9.5 7.7 8.1 Av. QP 57.1 45.1 41 47.2 64 45.3 45.7 49.8 42.1 54.3 Av. T(s) 14.1 11.1 10.6 11.9 17.2 6.8 6.9 7.3 6.7 8.6 10 Av. IT 30.1 30 30.2 30.7 33.4 12.7 12.7 11.7 13.5 12.2 Av. QP 59.7 57.7 56.7 59.9 73.1 52.2 52.7 48.1 64.8 71.4 Av. T(s) 15.4 15.2 14.8 15.7 20.5 6.9 6.9 6.4 8.2 9.4
 $\bf{n=20}$ $\bf{m=10}$ $\bf{p=10}$ Algo 5 Algo [43] $\bf{ \pmb{\mathsf{ β}}_k}$ $c$ 0.01 0.05 0.1 0.5 0.9 0.01 0.05 0.1 0.5 0.9 0.01 Av. IT 13.3 12.9 11.5 10.8 8.8 7.9 8.4 7.5 5.2 4.4 Av. QP 119.7 117.4 90.9 95.3 87.9 97.8 104.2 93.9 64.6 59.4 Av. T(s) 34.2 33.9 25.7 27.5 25.2 16.5 17.7 16.3 12 11.4 0.5 Av. IT 12.6 12.4 11.2 12.3 9.5 8 8.8 8.1 5.3 4.5 Av. QP 71.3 65.5 59.6 71.8 64.1 78.1 93.5 81.6 56.4 47.2 Av. T(s) 17.2 16.7 15 19.5 17.5 12.4 14.6 13.1 10 8.9 1 Av. IT 13.4 13.1 13.1 12.3 10.4 9.6 8.8 8.2 5.2 4.9 Av. QP 64.2 63.6 59.3 59.4 58.5 83.2 75 72.7 50.9 43 Av. T(s) 16.6 16.5 15.5 16.6 16 13.1 11.8 11.5 9 7.8 5 Av. IT 19.5 17.3 16.7 17.2 20.3 9.5 9.3 9.5 7.7 8.1 Av. QP 57.1 45.1 41 47.2 64 45.3 45.7 49.8 42.1 54.3 Av. T(s) 14.1 11.1 10.6 11.9 17.2 6.8 6.9 7.3 6.7 8.6 10 Av. IT 30.1 30 30.2 30.7 33.4 12.7 12.7 11.7 13.5 12.2 Av. QP 59.7 57.7 56.7 59.9 73.1 52.2 52.7 48.1 64.8 71.4 Av. T(s) 15.4 15.2 14.8 15.7 20.5 6.9 6.9 6.4 8.2 9.4
 [1] Hssaine Boualam, Ahmed Roubi. Augmented Lagrangian dual for nonconvex minimax fractional programs and proximal bundle algorithms for its resolution. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022100 [2] Chunming Tang, Jinbao Jian, Guoyin Li. A proximal-projection partial bundle method for convex constrained minimax problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 757-774. doi: 10.3934/jimo.2018069 [3] Hadi Khatibzadeh, Vahid Mohebbi, Mohammad Hossein Alizadeh. On the cyclic pseudomonotonicity and the proximal point algorithm. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 441-449. doi: 10.3934/naco.2018027 [4] Ram U. Verma. On the generalized proximal point algorithm with applications to inclusion problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 381-390. doi: 10.3934/jimo.2009.5.381 [5] Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361 [6] Xiao-Bing Li, Qi-Lin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1133-1151. doi: 10.3934/jimo.2018089 [7] Guoyong Gu, Junfeng Yang. A unified and tight linear convergence analysis of the relaxed proximal point algorithm. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022107 [8] Mostafa El Haffari, Ahmed Roubi. Prox-dual regularization algorithm for generalized fractional programs. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1991-2013. doi: 10.3934/jimo.2017028 [9] Anurag Jayswal, Ashish Kumar Prasad, Izhar Ahmad. On minimax fractional programming problems involving generalized $(H_p,r)$-invex functions. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1001-1018. doi: 10.3934/jimo.2014.10.1001 [10] Zhi-Bin Deng, Ye Tian, Cheng Lu, Wen-Xun Xing. Globally solving quadratic programs with convex objective and complementarity constraints via completely positive programming. Journal of Industrial and Management Optimization, 2018, 14 (2) : 625-636. doi: 10.3934/jimo.2017064 [11] Andrew E.B. Lim, John B. Moore. A path following algorithm for infinite quadratic programming on a Hilbert space. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 653-670. doi: 10.3934/dcds.1998.4.653 [12] Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial and Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177 [13] Yu-Lin Chang, Jein-Shan Chen, Jia Wu. Proximal point algorithm for nonlinear complementarity problem based on the generalized Fischer-Burmeister merit function. Journal of Industrial and Management Optimization, 2013, 9 (1) : 153-169. doi: 10.3934/jimo.2013.9.153 [14] Giuseppe Marino, Hong-Kun Xu. Convergence of generalized proximal point algorithms. Communications on Pure and Applied Analysis, 2004, 3 (4) : 791-808. doi: 10.3934/cpaa.2004.3.791 [15] Ailing Zhang, Shunsuke Hayashi. Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 83-98. doi: 10.3934/naco.2011.1.83 [16] Soodabeh Asadi, Hossein Mansouri. A Mehrotra type predictor-corrector interior-point algorithm for linear programming. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 147-156. doi: 10.3934/naco.2019011 [17] Yanqin Bai, Lipu Zhang. A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization. Journal of Industrial and Management Optimization, 2011, 7 (4) : 891-906. doi: 10.3934/jimo.2011.7.891 [18] Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283 [19] Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems and Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 [20] Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

2021 Impact Factor: 1.411