October  2019, 15(4): 1995-2008. doi: 10.3934/jimo.2018133

Extreme values problem of uncertain heat equation

School of Information Technology & Management, University of International, Business & Economics, Beijing 100029, China

* Corresponding author: Yaodong Ni

Received  March 2018 Revised  April 2018 Published  August 2018

Fund Project: The second author is supported by National Natural Science Foundation of China (Grant No. 71471038).

Uncertain heat equation is a class of uncertain partial differential equations involving Liu processes. This paper first gives the uncertainty distributions and the inverse uncertainty distributions of extreme values of solutions for uncertain heat equations. Numerical methods are designed to gain the inverse uncertainty distributions of extreme values of solutions.

Citation: Xiangfeng Yang, Yaodong Ni. Extreme values problem of uncertain heat equation. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1995-2008. doi: 10.3934/jimo.2018133
References:
[1]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[2]

X. Chen and J. Gao, Uncertain term structure model of interest rate, Soft Computing, 17 (2013), 597-604.  doi: 10.1007/s00500-012-0927-0.  Google Scholar

[3]

B. Liu, Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007. Google Scholar

[4]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[5]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.  doi: 10.1007/978-3-662-44354-5.  Google Scholar

[6]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010. Google Scholar

[7]

B. Liu, Toward uncertain finance theory, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 1. doi: 10.1186/2195-5468-1-1.  Google Scholar

[8]

B. Liu, Uncertainty distribution and independence of uncertain processes, Fuzzy Optimization and Decision Making, 13 (2014), 259-271.  doi: 10.1007/s10700-014-9181-5.  Google Scholar

[9]

Y. LiuX. Chen and D. A. Ralescu, Uncertain currency model and currency option pricing, International Journal of Intelligent Systems, 30 (2015), 40-51.  doi: 10.1002/int.21680.  Google Scholar

[10]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 17. doi: 10.1186/2195-5468-1-17.  Google Scholar

[11]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819-826.  doi: 10.1109/TFUZZ.2015.2486809.  Google Scholar

[12]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optimization and Decision Making, 16 (2017), 379-403.  doi: 10.1007/s10700-016-9253-9.  Google Scholar

[13]

X. Yang and Y. Ni, Existence and uniqueness theorem for uncertain heat equation, Journal of Ambient Intelligence and Humanized Computing, 8 (2017), 717-725.  doi: 10.1007/s12652-017-0479-3.  Google Scholar

[14]

X. Yang, A numerical method for solving uncertain heat equation, Applied Mathematics and Computation, 329 (2018), 92-104.  doi: 10.1016/j.amc.2018.01.055.  Google Scholar

[15]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, Journal of Intelligent & Fuzzy Systems, 25 (2013), 825-832.   Google Scholar

[16]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.   Google Scholar

show all references

References:
[1]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[2]

X. Chen and J. Gao, Uncertain term structure model of interest rate, Soft Computing, 17 (2013), 597-604.  doi: 10.1007/s00500-012-0927-0.  Google Scholar

[3]

B. Liu, Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007. Google Scholar

[4]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[5]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.  doi: 10.1007/978-3-662-44354-5.  Google Scholar

[6]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010. Google Scholar

[7]

B. Liu, Toward uncertain finance theory, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 1. doi: 10.1186/2195-5468-1-1.  Google Scholar

[8]

B. Liu, Uncertainty distribution and independence of uncertain processes, Fuzzy Optimization and Decision Making, 13 (2014), 259-271.  doi: 10.1007/s10700-014-9181-5.  Google Scholar

[9]

Y. LiuX. Chen and D. A. Ralescu, Uncertain currency model and currency option pricing, International Journal of Intelligent Systems, 30 (2015), 40-51.  doi: 10.1002/int.21680.  Google Scholar

[10]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 17. doi: 10.1186/2195-5468-1-17.  Google Scholar

[11]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819-826.  doi: 10.1109/TFUZZ.2015.2486809.  Google Scholar

[12]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optimization and Decision Making, 16 (2017), 379-403.  doi: 10.1007/s10700-016-9253-9.  Google Scholar

[13]

X. Yang and Y. Ni, Existence and uniqueness theorem for uncertain heat equation, Journal of Ambient Intelligence and Humanized Computing, 8 (2017), 717-725.  doi: 10.1007/s12652-017-0479-3.  Google Scholar

[14]

X. Yang, A numerical method for solving uncertain heat equation, Applied Mathematics and Computation, 329 (2018), 92-104.  doi: 10.1016/j.amc.2018.01.055.  Google Scholar

[15]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, Journal of Intelligent & Fuzzy Systems, 25 (2013), 825-832.   Google Scholar

[16]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.   Google Scholar

Figure 1.  Inverse Uncertainty Distributions of Extreme Values in Example 4.1
Figure 2.  Inverse Uncertainty Distributions of Extreme Values in Example 4.2
[1]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[2]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[3]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[4]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[5]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[6]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[7]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[8]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[9]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[12]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[13]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[14]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[15]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[16]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[17]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[18]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (189)
  • HTML views (936)
  • Cited by (4)

Other articles
by authors

[Back to Top]