\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Double projection algorithms for solving the split feasibility problems

  • * Corresponding author: Jie Sun

    * Corresponding author: Jie Sun 
This work was partially supported by National Science Foundation of China (Grants 71572113 and 11401322) and Australian Research Council (Grant DP160102819).
Abstract Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • We propose two new double projection algorithms for solving the split feasibility problem (SFP). Different from the extragradient projection algorithms, the proposed algorithms do not require fixed stepsize and do not employ the same projection region at different projection steps. We adopt flexible rules for selecting the stepsize and the projection region. The proposed algorithms are shown to be convergent under certain assumptions. Numerical experiments show that the proposed methods appear to be more efficient than the relaxed- CQ algorithm.

    Mathematics Subject Classification: Primary: 37C25, 47H09; Secondary: 90C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  The numerical results of Example 5.1

    Initiative point CQ Algorithm with stepsize $\frac{1}{\rho(A^{T}A})$ Algorithm 3.1 Algorithm 4.1
    $ x^{0}=$ $ k=269; s=0.063$ $ k=54; s=0.101$ $ k=28; s=0.077$
    $ (-5,-2,-10)^{T}$ $x^{\ast}=(0.5071,-1.8186,01.9072)^{T}$ $x^{\ast}=(0.8718; -1.6577; -1.4080)^{T}$ $x^{\ast}=(1.1595;-1.0082;0-1.0814)^{T}$
    $ x^{0}=$ $ k=261; s =0.063$ $ k=16; s=0.061$ $ k=1; s=0.045$
    $ (-2,-1,-5)^{T}$ $x^{\ast}=(0.1098;-1.7655; -1.6134)^{T}$ $x^{\ast}=(0.6814;-1.4212; -1.0762)^{T}$ $x^{\ast}=(0.4734;-1.7714 ; -1.3758)^{T}$
    $ x^{0}=$ $ k=6450; s =0.525$ $ k=59; s=0.096$ $ k=1; s=0.048$
    $(-6,0,-1)^{T}$ $x^{\ast}=(-3.9899;-0.6144; 1.8062)^{T}$ $x^{\ast}=((-3.8898;-0.5850; 1.9604)^{T}$ $x^{\ast}=(-3.9302,-1.0861,1.9786)^{T}$
     | Show Table
    DownLoad: CSV

    Table 2.  The numerical results of Example 5.2

    $M, N $ CQ Algorithm with stepsize $\frac{1}{\rho(A^{T}A}$ $t_{k}$ Algorithm3.1 Algorithm 4.1
    $ M=20, N=10$ $ k=485, s =1.040$ 0.8 $ k=274, s =0.312$ $ k=210, s =0.270$
    1.0 $ k=193, s =0.100$ $ k=108, s =0.070$
    1.8 $ k=103, s =0.067$ $ k=64, s =0.021$
    $M=100, N=90$ $ k=3987, s =3.100$ 0.4 $ k=1534, s =0.690$ $ k=1244, s =0.530$
    1 $ k=1074, s =0.500$ $ k=630, s =0.261$
    1.6 $ k=674, s =0.201$ $ k=412, s =0.132$
     | Show Table
    DownLoad: CSV
  • [1] H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Review, 38 (1996), 367-426.  doi: 10.1137/S0036144593251710.
    [2] C. Byrne, An unified treatment of some iterative algorithm algorithms in signal processing and image reconstruction, Inverse Problems, 20 (2004), 103-120.  doi: 10.1088/0266-5611/20/1/006.
    [3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453.  doi: 10.1088/0266-5611/18/2/310.
    [4] J. W. Chinneck, The constraint consensus method for finding approximately feasible points in nonlinear programs, INFORMS Journal on Computing, 16 (2004), 255-265.  doi: 10.1287/ijoc.1030.0046.
    [5] Y. Censor, Parallel application of block iterative methods in medical imaging and radiation therapy, Mathematical Programming, 42 (1998), 307-325.  doi: 10.1007/BF01589408.
    [6] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numerical Algorithms, 8 (1994), 221-239.  doi: 10.1007/BF02142692.
    [7] Y. CensorT. ElfvingN. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.  doi: 10.1088/0266-5611/21/6/017.
    [8] L. C. CengQ. H. Ansari and J. C. Yao, An extragradient method for solving split feasibility and fixed point problems, Computers and Mathematics with Applications, 64 (2012), 633-642.  doi: 10.1016/j.camwa.2011.12.074.
    [9] F. Deutsch, The method of alternating orthogonal projections, in Approximation Theory, Spline Functions and Applications, Kluwer Academic Publishers, Dordrecht, 1992,105-121.
    [10] Y. Dang and Y. Gao, The strong convergence of a KM-CQ-Like algorithm for split feasibility problem, Inverse Problems, 27 (2011), 9pp. doi: 10.1088/0266-5611/27/1/015007.
    [11] Y. Gao, Nonsmooth Optimization (in Chinese), Science Press, Beijing, 2008.
    [12] B. He, Inexact implicit methods for monotone general variational inequalities, Mathematical Programming, 35 (1999), 199-217.  doi: 10.1007/s101070050086.
    [13] G. T. Herman, Image Reconstruction From Projections: The Fundamentals of Computerized Tomography, Academic Press, New York, 1980.
    [14] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
    [15] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, Journal of Optimization Theory and Applications, 128 (2006), 191-201.  doi: 10.1007/s10957-005-7564-z.
    [16] B. Qu and N. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Problem, 21 (2005), 1655-1665.  doi: 10.1088/0266-5611/21/5/009.
    [17] B. Qu and N. Xiu, A new halfspace-relaxation projection method for the split feasibility problem, Linear Algebra and Its Application, 428 (2008), 1218-1229.  doi: 10.1016/j.laa.2007.03.002.
    [18] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1971.
    [19] H. Xu, A variate Krasnosel$'$ ski-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, 22 (2006), 2021-2034.  doi: 10.1088/0266-5611/22/6/007.
    [20] A. L. YanG. Y. Wang and N. Xiu, Robust solutions of split feasibility problem with uncertain linear operator, Journal of Industrial and Management Optimization, 3 (2007), 749-761.  doi: 10.3934/jimo.2007.3.749.
    [21] Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems, 20 (2004), 1261-1266.  doi: 10.1088/0266-5611/20/4/014.
    [22] Y. N. YangQ. Yang and S. Zhang, Modified alternating direction methods for the modified multiple-sets split feasibility problems, Journal of Optimization Theory and Applications, 163 (2014), 130-147.  doi: 10.1007/s10957-013-0502-6.
    [23] W. X. Zhang, D. Han and Z. B. Li, A self-adaptive projection method for solving the multiple-sets split feasibility problem, Inverse Problem, 25 (2009), 115001, 16pp. doi: 10.1088/0266-5611/25/11/115001.
    [24] J. L. Zhao and Q. Yang, Self-adaptive projection methods for the multiple-sets split feasibility problem, Inverse Problem, 27 (2011), 035009, 13pp. doi: 10.1088/0266-5611/27/3/035009.
    [25] J. Zhao and Q. Yang, Several solution methods for the split feasibility problem, Inverse Problems, 21 (2005), 1791-1799.  doi: 10.1088/0266-5611/21/5/017.
    [26] E. H. Zarantonello, Projections on convex set in Hilbert space and spectral theory, in Contributions to Nonlinear Functional Analysis (ed. E. H. Zarantonello), Academic, New York, 1971.
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(1240) PDF downloads(359) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return