[1]
|
H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Review, 38 (1996), 367-426.
doi: 10.1137/S0036144593251710.
|
[2]
|
C. Byrne, An unified treatment of some iterative algorithm algorithms in signal processing and image reconstruction, Inverse Problems, 20 (2004), 103-120.
doi: 10.1088/0266-5611/20/1/006.
|
[3]
|
C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453.
doi: 10.1088/0266-5611/18/2/310.
|
[4]
|
J. W. Chinneck, The constraint consensus method for finding approximately feasible points in nonlinear programs, INFORMS Journal on Computing, 16 (2004), 255-265.
doi: 10.1287/ijoc.1030.0046.
|
[5]
|
Y. Censor, Parallel application of block iterative methods in medical imaging and radiation therapy, Mathematical Programming, 42 (1998), 307-325.
doi: 10.1007/BF01589408.
|
[6]
|
Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numerical Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692.
|
[7]
|
Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017.
|
[8]
|
L. C. Ceng, Q. H. Ansari and J. C. Yao, An extragradient method for solving split feasibility and fixed point problems, Computers and Mathematics with Applications, 64 (2012), 633-642.
doi: 10.1016/j.camwa.2011.12.074.
|
[9]
|
F. Deutsch, The method of alternating orthogonal projections, in Approximation Theory, Spline Functions and Applications, Kluwer Academic Publishers, Dordrecht, 1992,105-121.
|
[10]
|
Y. Dang and Y. Gao, The strong convergence of a KM-CQ-Like algorithm for split feasibility problem, Inverse Problems, 27 (2011), 9pp.
doi: 10.1088/0266-5611/27/1/015007.
|
[11]
|
Y. Gao, Nonsmooth Optimization (in Chinese), Science Press, Beijing, 2008.
|
[12]
|
B. He, Inexact implicit methods for monotone general variational inequalities, Mathematical Programming, 35 (1999), 199-217.
doi: 10.1007/s101070050086.
|
[13]
|
G. T. Herman, Image Reconstruction From Projections: The Fundamentals of Computerized Tomography, Academic Press, New York, 1980.
|
[14]
|
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
|
[15]
|
N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, Journal of Optimization Theory and Applications, 128 (2006), 191-201.
doi: 10.1007/s10957-005-7564-z.
|
[16]
|
B. Qu and N. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Problem, 21 (2005), 1655-1665.
doi: 10.1088/0266-5611/21/5/009.
|
[17]
|
B. Qu and N. Xiu, A new halfspace-relaxation projection method for the split feasibility problem, Linear Algebra and Its Application, 428 (2008), 1218-1229.
doi: 10.1016/j.laa.2007.03.002.
|
[18]
|
R. T. Rockafellar, Convex Analysis, Princeton University Press, 1971.
|
[19]
|
H. Xu, A variate Krasnosel$'$ ski-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, 22 (2006), 2021-2034.
doi: 10.1088/0266-5611/22/6/007.
|
[20]
|
A. L. Yan, G. Y. Wang and N. Xiu, Robust solutions of split feasibility problem with uncertain linear operator, Journal of Industrial and Management Optimization, 3 (2007), 749-761.
doi: 10.3934/jimo.2007.3.749.
|
[21]
|
Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems, 20 (2004), 1261-1266.
doi: 10.1088/0266-5611/20/4/014.
|
[22]
|
Y. N. Yang, Q. Yang and S. Zhang, Modified alternating direction methods for the modified multiple-sets split feasibility problems, Journal of Optimization Theory and Applications, 163 (2014), 130-147.
doi: 10.1007/s10957-013-0502-6.
|
[23]
|
W. X. Zhang, D. Han and Z. B. Li, A self-adaptive projection method for solving the multiple-sets split feasibility problem, Inverse Problem, 25 (2009), 115001, 16pp.
doi: 10.1088/0266-5611/25/11/115001.
|
[24]
|
J. L. Zhao and Q. Yang, Self-adaptive projection methods for the multiple-sets split feasibility problem, Inverse Problem, 27 (2011), 035009, 13pp.
doi: 10.1088/0266-5611/27/3/035009.
|
[25]
|
J. Zhao and Q. Yang, Several solution methods for the split feasibility problem, Inverse Problems, 21 (2005), 1791-1799.
doi: 10.1088/0266-5611/21/5/017.
|
[26]
|
E. H. Zarantonello, Projections on convex set in Hilbert space and spectral theory, in Contributions to Nonlinear Functional Analysis (ed. E. H. Zarantonello), Academic, New York, 1971.
|