
-
Previous Article
A new class of global fractional-order projective dynamical system with an application
- JIMO Home
- This Issue
-
Next Article
Fairness preference based decision-making model for concession period in PPP projects
Continuity of solutions mappings of parametric set optimization problems
1. | School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
2. | School of Economics and Management, China University of Geosciences, Wuhan 430074, China |
3. | College of Management, Chongqing College of Humanities, Science & Technology, Chongqing 401524, China |
4. | School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China |
Set optimization is an indispensable part of theory and method of optimization, and has been received wide attentions due to its extensive applications in group decision and group game problems. This paper focus on the continuity of the strict (weak) minimal solution set mapping of parametric set-valued vector optimization problems with the lower set less order relation. We firstly introduce a concept of strict lower level mapping of parametric set-valued vector optimization problems. Moreover, the upper and lower semicontinuity of the strict lower level mapping are obtained under some suitable conditions. Lastly, the sufficient condition for the continuity of the strict minimal solution set mappings of parametric set optimization problems are established by a new proof method, which is different from that in [
References:
[1] |
M. Alonso and L. Rodríguez-Marín,
Optimality conditions for set-valued maps with set optimization, Nonlinear Anal., 70 (2009), 3057-3064.
doi: 10.1016/j.na.2008.04.027. |
[2] |
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley. New York, 1984. |
[3] |
J. W. Chen, Q. H. Ansari and J. C. Yao,
Characterizations of set order relations and constrained set optimization problems, Optim., 66 (2017), 1741-1754.
doi: 10.1080/02331934.2017.1322082. |
[4] |
J. W. Chen, E. Köbis, M. Köbis and J. C. Yao,
A new set order relation in set optimization, J. Nonlinear Convex Anal., 18 (2017), 637-649.
|
[5] |
M. Dhingra and C. S. Lalitha,
Well-setness and scalarization in set optimization, Optim. Lett., 10 (2016), 1657-1667.
doi: 10.1007/s11590-015-0942-z. |
[6] |
A. Göfert, Chr. Tammer, H. Riahi and C. Z$\check{a}$inescu, Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York, 2003. |
[7] |
C. Gutiérrez, B. Jiménez, E. Miglierina and E. Molho,
Scalarization in set optimization with solid and nonsolid ordering cones, J. Global Optim., 61 (2014), 525-552.
doi: 10.1007/s10898-014-0179-x. |
[8] |
C. Gutiérrez, E. Miglierina, E. Molho and V. Novo,
Pointwise well-posedness in set optimization with cone proper sets, Nonlinear Anal., 75 (2012), 1822-1833.
doi: 10.1016/j.na.2011.09.028. |
[9] |
A. H. Hamel and A. Löne,
Lagrange duality in set optimization, J. Optim. Theory Appl., 161 (2014), 368-397.
doi: 10.1007/s10957-013-0431-4. |
[10] |
E. Hernández and L. Rodríguez-Marín,
Existence theorems for set optimization problem, Nonlinear Anal., 67 (2007), 1726-1736.
doi: 10.1016/j.na.2006.08.013. |
[11] |
E. Hernández and L. Rodríguez-Marín,
Nonconvex scalarization in set optimization with set-valued maps, J. Math. Anal. Appl., 325 (2007), 1-18.
doi: 10.1016/j.jmaa.2006.01.033. |
[12] |
N. J. Huang, J. Li and H. B. Thompson,
Stability for parametric implicit vector equilibrium problems, Math. Comput. Model., 43 (2006), 1267-1274.
doi: 10.1016/j.mcm.2005.06.010. |
[13] |
J. Jahn,
A derivative-free descent method in set optimization, Comput. Optim. Appl., 60 (2015), 393-411.
doi: 10.1007/s10589-014-9674-8. |
[14] |
J. Jahn and T. X. D. Ha,
New set relations in set optimization, J. Optim. Theory Appl., 148 (2011), 209-236.
doi: 10.1007/s10957-010-9752-8. |
[15] |
A. A. Khan, C. Tammer and C. Z$\check{a}$linescu, Set-Valued Optimization: An Introduction with Applications, Springer, New York, 2015.
doi: 10.1007/978-3-642-54265-7. |
[16] |
S. Khoshkhabar-amiranloo and E. Khorram,
Pointwise well-posedness and scalarization in set optimization, Math. Meth. Oper. Res., 82 (2015), 195-210.
doi: 10.1007/s00186-015-0509-x. |
[17] |
B. T. Kien,
On the lower semicontinuity of optimal solution sets, Optim., 54 (2005), 123-130.
doi: 10.1080/02331930412331330379. |
[18] |
D. Klatte,
A sufficient condition for lower semicontinuity of solution sets of systems of convex inequalities, Math. Program. Stud., 21 (1984), 139-149.
|
[19] |
D. Kuroiwa, Some duality theorems of set-valued optimization with natural critera, In: Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis, 221-228. World Scientific, RiverEdge, 1999. |
[20] |
D. Kuroiwa,
On set-valued optimization, Nonlinear Anal., 47 (2001), 1395-1400.
doi: 10.1016/S0362-546X(01)00274-7. |
[21] |
S. J. Li, G. Y. Chen and K. L. Teo,
On the stability of generalized vector quasivariational inequality problems, J. Optim. Theory Appl., 113 (2002), 283-295.
doi: 10.1023/A:1014830925232. |
[22] |
S. J. Li and C. R. Chen,
Stability of weak vector variational inequality, Nonlinear Anal., 70 (2009), 1528-1535.
doi: 10.1016/j.na.2008.02.032. |
[23] |
S. J. Li and Z. M. Fang,
Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515.
doi: 10.1007/s10957-010-9736-8. |
[24] |
X. J. Long and J. W. Peng,
Generalized B-well-posedness for set optimization problems, J. Optim. Theory Appl., 157 (2013), 612-623.
doi: 10.1007/s10957-012-0205-4. |
[25] |
J. Liu, J. W. Chen, W. Y. Zhang and C. F. Wen,
Scalarization and pointwise Levitin-Polyak well-posedness for set optimization problems, J. Nonlinear Convex Anal., 18 (2017), 1023-1040.
|
[26] |
Q. L. Wang and S. J. Li,
Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem, J. Ind. Manag. Optim., 10 (2014), 1225-1234.
doi: 10.3934/jimo.2014.10.1225. |
[27] |
Y. D. Xu and S. J. Li,
Continuity of the solution set mappings to a parametric set optimization problem, Optim. Lett., 8 (2014), 2315-2327.
doi: 10.1007/s11590-014-0738-6. |
[28] |
Y. D. Xu and S. J. Li,
On the solution continuity of parametric set optimization problems, Math. Meth. Oper. Res., 84 (2016), 223-237.
doi: 10.1007/s00186-016-0541-5. |
[29] |
W. Y. Zhang, S. J. Li and K. L. Teo,
Well-posedness for set optimization problems, Nonlinear Anal., 71 (2009), 3769-3778.
doi: 10.1016/j.na.2009.02.036. |
[30] |
J. Zhao,
The lower semicontinuity of optimal solution sets, J. Math. Anal. Appl., 207 (1997), 240-254.
doi: 10.1006/jmaa.1997.5288. |
show all references
References:
[1] |
M. Alonso and L. Rodríguez-Marín,
Optimality conditions for set-valued maps with set optimization, Nonlinear Anal., 70 (2009), 3057-3064.
doi: 10.1016/j.na.2008.04.027. |
[2] |
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley. New York, 1984. |
[3] |
J. W. Chen, Q. H. Ansari and J. C. Yao,
Characterizations of set order relations and constrained set optimization problems, Optim., 66 (2017), 1741-1754.
doi: 10.1080/02331934.2017.1322082. |
[4] |
J. W. Chen, E. Köbis, M. Köbis and J. C. Yao,
A new set order relation in set optimization, J. Nonlinear Convex Anal., 18 (2017), 637-649.
|
[5] |
M. Dhingra and C. S. Lalitha,
Well-setness and scalarization in set optimization, Optim. Lett., 10 (2016), 1657-1667.
doi: 10.1007/s11590-015-0942-z. |
[6] |
A. Göfert, Chr. Tammer, H. Riahi and C. Z$\check{a}$inescu, Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York, 2003. |
[7] |
C. Gutiérrez, B. Jiménez, E. Miglierina and E. Molho,
Scalarization in set optimization with solid and nonsolid ordering cones, J. Global Optim., 61 (2014), 525-552.
doi: 10.1007/s10898-014-0179-x. |
[8] |
C. Gutiérrez, E. Miglierina, E. Molho and V. Novo,
Pointwise well-posedness in set optimization with cone proper sets, Nonlinear Anal., 75 (2012), 1822-1833.
doi: 10.1016/j.na.2011.09.028. |
[9] |
A. H. Hamel and A. Löne,
Lagrange duality in set optimization, J. Optim. Theory Appl., 161 (2014), 368-397.
doi: 10.1007/s10957-013-0431-4. |
[10] |
E. Hernández and L. Rodríguez-Marín,
Existence theorems for set optimization problem, Nonlinear Anal., 67 (2007), 1726-1736.
doi: 10.1016/j.na.2006.08.013. |
[11] |
E. Hernández and L. Rodríguez-Marín,
Nonconvex scalarization in set optimization with set-valued maps, J. Math. Anal. Appl., 325 (2007), 1-18.
doi: 10.1016/j.jmaa.2006.01.033. |
[12] |
N. J. Huang, J. Li and H. B. Thompson,
Stability for parametric implicit vector equilibrium problems, Math. Comput. Model., 43 (2006), 1267-1274.
doi: 10.1016/j.mcm.2005.06.010. |
[13] |
J. Jahn,
A derivative-free descent method in set optimization, Comput. Optim. Appl., 60 (2015), 393-411.
doi: 10.1007/s10589-014-9674-8. |
[14] |
J. Jahn and T. X. D. Ha,
New set relations in set optimization, J. Optim. Theory Appl., 148 (2011), 209-236.
doi: 10.1007/s10957-010-9752-8. |
[15] |
A. A. Khan, C. Tammer and C. Z$\check{a}$linescu, Set-Valued Optimization: An Introduction with Applications, Springer, New York, 2015.
doi: 10.1007/978-3-642-54265-7. |
[16] |
S. Khoshkhabar-amiranloo and E. Khorram,
Pointwise well-posedness and scalarization in set optimization, Math. Meth. Oper. Res., 82 (2015), 195-210.
doi: 10.1007/s00186-015-0509-x. |
[17] |
B. T. Kien,
On the lower semicontinuity of optimal solution sets, Optim., 54 (2005), 123-130.
doi: 10.1080/02331930412331330379. |
[18] |
D. Klatte,
A sufficient condition for lower semicontinuity of solution sets of systems of convex inequalities, Math. Program. Stud., 21 (1984), 139-149.
|
[19] |
D. Kuroiwa, Some duality theorems of set-valued optimization with natural critera, In: Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis, 221-228. World Scientific, RiverEdge, 1999. |
[20] |
D. Kuroiwa,
On set-valued optimization, Nonlinear Anal., 47 (2001), 1395-1400.
doi: 10.1016/S0362-546X(01)00274-7. |
[21] |
S. J. Li, G. Y. Chen and K. L. Teo,
On the stability of generalized vector quasivariational inequality problems, J. Optim. Theory Appl., 113 (2002), 283-295.
doi: 10.1023/A:1014830925232. |
[22] |
S. J. Li and C. R. Chen,
Stability of weak vector variational inequality, Nonlinear Anal., 70 (2009), 1528-1535.
doi: 10.1016/j.na.2008.02.032. |
[23] |
S. J. Li and Z. M. Fang,
Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515.
doi: 10.1007/s10957-010-9736-8. |
[24] |
X. J. Long and J. W. Peng,
Generalized B-well-posedness for set optimization problems, J. Optim. Theory Appl., 157 (2013), 612-623.
doi: 10.1007/s10957-012-0205-4. |
[25] |
J. Liu, J. W. Chen, W. Y. Zhang and C. F. Wen,
Scalarization and pointwise Levitin-Polyak well-posedness for set optimization problems, J. Nonlinear Convex Anal., 18 (2017), 1023-1040.
|
[26] |
Q. L. Wang and S. J. Li,
Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem, J. Ind. Manag. Optim., 10 (2014), 1225-1234.
doi: 10.3934/jimo.2014.10.1225. |
[27] |
Y. D. Xu and S. J. Li,
Continuity of the solution set mappings to a parametric set optimization problem, Optim. Lett., 8 (2014), 2315-2327.
doi: 10.1007/s11590-014-0738-6. |
[28] |
Y. D. Xu and S. J. Li,
On the solution continuity of parametric set optimization problems, Math. Meth. Oper. Res., 84 (2016), 223-237.
doi: 10.1007/s00186-016-0541-5. |
[29] |
W. Y. Zhang, S. J. Li and K. L. Teo,
Well-posedness for set optimization problems, Nonlinear Anal., 71 (2009), 3769-3778.
doi: 10.1016/j.na.2009.02.036. |
[30] |
J. Zhao,
The lower semicontinuity of optimal solution sets, J. Math. Anal. Appl., 207 (1997), 240-254.
doi: 10.1006/jmaa.1997.5288. |
[1] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[2] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[3] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[4] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[5] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[6] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[7] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[8] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[9] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[10] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[11] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[12] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[13] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[14] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[15] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[16] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[17] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[18] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]