
-
Previous Article
Necessary optimality condition for trilevel optimization problem
- JIMO Home
- This Issue
-
Next Article
Continuity of solutions mappings of parametric set optimization problems
A new class of global fractional-order projective dynamical system with an application
1. | Department of Mathematics, Luoyang Normal University, Luoyang, Henan 471934, China |
2. | Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China |
In this article, some existence and uniqueness of solutions for a new class of global fractional-order projective dynamical system with delay and perturbation are proved by employing the Krasnoselskii fixed point theorem and the Banach fixed point theorem. Moreover, an approximating algorithm is also provided to find a solution of the global fractional-order projective dynamical system. Finally, an application to the idealized traveler information systems for day-to-day adjustments processes and a numerical example are given.
References:
[1] |
W. M. Ahmad and R. El-Khazali,
Fractional-order dynamical models of love, Chaos Solit. Fract., 33 (2007), 1367-1375.
doi: 10.1016/j.chaos.2006.01.098. |
[2] |
R. P. Agarwal, Y. Zhou and Y. Y. He,
Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095-1100.
doi: 10.1016/j.camwa.2009.05.010. |
[3] |
S. Abbas,
Existence of solutions to fractional order ordinary and delay differential equations and applications, Electron J. Differential Equations, 2011 (2011), 1-11.
|
[4] |
S. Bhalekar and V. Daftardar-geji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calc. Appl., 1 (2011), 1-9. Google Scholar |
[5] |
P. Dupuis and A. Nagurney,
Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.
doi: 10.1007/BF02073589. |
[6] |
K. Diethelm, N. J. Ford and A. D. Freed,
A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22.
doi: 10.1023/A:1016592219341. |
[7] |
K. Diethelm, N. J. Ford and A. D. Freed,
Detailed error analysis for a fractional adams method, Numer. Algorithms, 36 (2004), 31-52.
doi: 10.1023/B:NUMA.0000027736.85078.be. |
[8] |
K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Berlin, 2010.
doi: 10.1007/978-3-642-14574-2. |
[9] |
W. H. Deng, C. P. Li and J. H. Lu,
Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynam., 48 (2007), 409-416.
doi: 10.1007/s11071-006-9094-0. |
[10] |
H. Dia and S. Panwai, Modelling drivers' compliance and rout choice behaviour in response to travel information, Nonlinear Dynam., 49 (2007), 493-509. Google Scholar |
[11] |
K. Ding and N. J. Huang,
A new interval projection neural networks for solving interval quadratic program, Chaos Solitons Fractals, 35 (2008), 718-725.
doi: 10.1016/j.chaos.2006.05.037. |
[12] |
T. L. Friesz, D. H. Bernstein, N. J. Mehta, R. L. Tobin and S. Ganjlizadeh,
Day-to-day dynamic network disequilibria and idealized traveler information systems, Oper. Res., 42 (1994), 1120-1136.
doi: 10.1287/opre.42.6.1120. |
[13] |
T. L. Friesz, Z. G. Suo and D. H. Bernstein,
A dynamic disequilibrium interregional commodity flow model, Transport. Res. B, 32 (1998), 467-483.
doi: 10.1016/S0191-2615(98)00012-5. |
[14] |
Y. Jalilian and R. Jalilian,
Existence of solution for delay fractional differential equations, Mediterr. J. Math., 10 (2013), 1731-1747.
doi: 10.1007/s00009-013-0281-1. |
[15] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,
Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[16] |
D. Kinderlehrer and G. Stampcchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
![]() |
[17] |
M. A. Krasnoselskii,
Some problems of nonlinear analysis, Amer. Math. Soc. Transl., 10 (1958), 345-409.
|
[18] |
W. H. Lin, A. Kulkarni and P. Mirchandani, Short-time arterial travel time prediction for advanced traveler infromation systems, J. Intel. Transportation Sys., 8 (2004), 143-154. Google Scholar |
[19] |
C. P. Li and F. R. Zhang,
A survey on the stability of fractional differential equations, Eur. Phys. J. Special Topics, 193 (2011), 27-47.
doi: 10.1140/epjst/e2011-01379-1. |
[20] |
T. Maraaba, F. Jarad and D. Baleanu,
On the existence and the uniqueness theorem for fractional differential equations with bounded delay within caputo derivatives, Sci. China Ser. A, 51 (2008), 1775-1786.
doi: 10.1007/s11425-008-0068-1. |
[21] |
T. Maraaba, D. Baleanu and F. Jarad,
Existence and uniqueness theorem for a class of delay differential equations with left and right caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507, 11pp.
doi: 10.1063/1.2970709. |
[22] |
M. L. Morgado, N. J. Ford and P. M. Lima,
Analysis and numerical methods for fractional differential equations with delay, J. Comput. Appl. Math., 252 (2013), 159-168.
doi: 10.1016/j.cam.2012.06.034. |
[23] |
B. P. Moghaddam and Z. S. Mostaghim,
A numerical method based on finite difference for solving fractional delay differential equations, J. Taibah Univ. Sci., 7 (2013), 120-127.
doi: 10.1016/j.jtusci.2013.07.002. |
[24] |
A. Nagumey and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications, Springer, New York, 1996.
doi: 10.1007/978-1-4615-2301-7.![]() |
[25] |
N. Ozalp and I. Koca,
A fractional order nonlinear dynamical model of interpersonal relationships, Adv. Difference Equat., 2012 (2012), 7pp.
doi: 10.1186/1687-1847-2012-189. |
[26] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
![]() |
[27] |
S. B. Skaar, A. N. Michel and R. K. Miller,
Stability of viscoelastic control systems, IEEE Trans. Automat. Control, 33 (1988), 348-357.
doi: 10.1109/9.192189. |
[28] |
W. Y. Szeto and H. K. Lo,
The impact of advanced traveler information services on travel time and schedule delay costs, J. Intel. Transportation Sys., 9 (2007), 47-55.
doi: 10.1080/15472450590916840. |
[29] |
L. Song, S. Y. Xu and J. Y. Yang,
Dynamical models of happiness with fractional order, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 616-628.
doi: 10.1016/j.cnsns.2009.04.029. |
[30] |
P. J. Torvik and R. L. Bagley,
On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294-298.
doi: 10.1115/1.3167615. |
[31] |
Z. Wang, A numerical method for delayed fractional-order differential equations,
J. Appl. Math. , 2013 (2013), Article ID 256071, 7 pages. |
[32] |
X. K. Wu, Z. B. Wu and Y. Z. Zou,
Existence, uniqueness and stability for a class of interval projective dynamical systems, Comm. Appl. Nonlinear Anal., 20 (2013), 81-94.
|
[33] |
Z. B. Wu and Y. Z. Zou,
Stability analysis of two related projective dynamical systems in Hilbert spaces, Nonlinear Anal. Forum, 19 (2014), 37-51.
|
[34] |
Z. B. Wu and Y. Z. Zou,
Global fraction-order projective dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2811-2819.
doi: 10.1016/j.cnsns.2014.01.007. |
[35] |
Z. B. Wu, Y. Z. Zou and N. J. Huang,
A system of fractional-order interval projection neural networks, J. Comput. Appl. Math., 294 (2016), 389-402.
doi: 10.1016/j.cam.2015.09.007. |
[36] |
Z. B. Wu, Y. Z. Zou and N. J. Huang,
A class of global fractional-order projective dynamical systems involving set-valued perturbations, Appl. Math. Comput., 277 (2016), 23-33.
doi: 10.1016/j.amc.2015.12.033. |
[37] |
Z. B. Wu, J. D. Li and N. J. Huang, A new system of global fractional-order interval implicit projection neural networks, Neurocomputing, 282 (2018), 111-121. Google Scholar |
[38] |
Z. B. Wu, C. Min and N. J. Huang,
On a system of fuzzy fractional differential inclusions with projection operators, Fuzzy Sets Syst., 347 (2018), 70-88.
doi: 10.1016/j.fss.2018.01.005. |
[39] |
Y. S. Xia and T. L. Vincent,
On the stability of global projected dynamical systems, J. Optim. Theory Appl., 106 (2000), 129-150.
doi: 10.1023/A:1004611224835. |
[40] |
Y. S. Xia,
Further results on global convergence and stability of global projected dynamical systems, J. Optim. Theory Appl., 122 (2004), 627-649.
doi: 10.1023/B:JOTA.0000042598.21226.af. |
[41] |
Z. H. Yang and J. D. Cao,
Initial value problems for arbitrary order fractional differential equations with delay, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2993-3005.
doi: 10.1016/j.cnsns.2013.03.006. |
[42] |
D. Zhang and A. Nagurney,
On the stability of projected dynamical systems, J. Optim. Theory Appl., 85 (1995), 97-124.
doi: 10.1007/BF02192301. |
[43] |
X. M. Zhao and G. Orosz,
Nonlinear day-to-day traffic dynamics with driver experience delay: Modeling, stability and bifurcation analysis, Phys. D, 275 (2014), 54-66.
doi: 10.1016/j.physd.2014.02.005. |
[44] |
Y. Zhou, F. Jiao and J. Li,
Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal., 71 (2009), 3249-3256.
doi: 10.1016/j.na.2009.01.202. |
[45] |
Y. Z. Zou, X. Li, N. J. Huang and C. Y. Sun, Global dynamical systems involving generalized $f$-projection operators and set-valued perturbation in Banach spaces,
J. Appl. Math. , 2012 (2012), Article ID 682465, 12 pages. |
[46] |
Y. Z. Zou and C. Y. Sun,
Equilibrium points for two related projective dynamical systems, Comm. Appl. Nonlinear Anal., 19 (2012), 111-119.
|
[47] |
Y. Z. Zou, X. K. Wu, W. B. Zhang and C. Y. Sun,
An iterative method for a class of generalized global dynamical system involving fuzzy mappings in Hilbert spaces, Lecture Notes in Commput. Sci., 7666 (2012), 44-51.
doi: 10.1007/978-3-642-34478-7_6. |
show all references
References:
[1] |
W. M. Ahmad and R. El-Khazali,
Fractional-order dynamical models of love, Chaos Solit. Fract., 33 (2007), 1367-1375.
doi: 10.1016/j.chaos.2006.01.098. |
[2] |
R. P. Agarwal, Y. Zhou and Y. Y. He,
Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095-1100.
doi: 10.1016/j.camwa.2009.05.010. |
[3] |
S. Abbas,
Existence of solutions to fractional order ordinary and delay differential equations and applications, Electron J. Differential Equations, 2011 (2011), 1-11.
|
[4] |
S. Bhalekar and V. Daftardar-geji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calc. Appl., 1 (2011), 1-9. Google Scholar |
[5] |
P. Dupuis and A. Nagurney,
Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.
doi: 10.1007/BF02073589. |
[6] |
K. Diethelm, N. J. Ford and A. D. Freed,
A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22.
doi: 10.1023/A:1016592219341. |
[7] |
K. Diethelm, N. J. Ford and A. D. Freed,
Detailed error analysis for a fractional adams method, Numer. Algorithms, 36 (2004), 31-52.
doi: 10.1023/B:NUMA.0000027736.85078.be. |
[8] |
K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Berlin, 2010.
doi: 10.1007/978-3-642-14574-2. |
[9] |
W. H. Deng, C. P. Li and J. H. Lu,
Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynam., 48 (2007), 409-416.
doi: 10.1007/s11071-006-9094-0. |
[10] |
H. Dia and S. Panwai, Modelling drivers' compliance and rout choice behaviour in response to travel information, Nonlinear Dynam., 49 (2007), 493-509. Google Scholar |
[11] |
K. Ding and N. J. Huang,
A new interval projection neural networks for solving interval quadratic program, Chaos Solitons Fractals, 35 (2008), 718-725.
doi: 10.1016/j.chaos.2006.05.037. |
[12] |
T. L. Friesz, D. H. Bernstein, N. J. Mehta, R. L. Tobin and S. Ganjlizadeh,
Day-to-day dynamic network disequilibria and idealized traveler information systems, Oper. Res., 42 (1994), 1120-1136.
doi: 10.1287/opre.42.6.1120. |
[13] |
T. L. Friesz, Z. G. Suo and D. H. Bernstein,
A dynamic disequilibrium interregional commodity flow model, Transport. Res. B, 32 (1998), 467-483.
doi: 10.1016/S0191-2615(98)00012-5. |
[14] |
Y. Jalilian and R. Jalilian,
Existence of solution for delay fractional differential equations, Mediterr. J. Math., 10 (2013), 1731-1747.
doi: 10.1007/s00009-013-0281-1. |
[15] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,
Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[16] |
D. Kinderlehrer and G. Stampcchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
![]() |
[17] |
M. A. Krasnoselskii,
Some problems of nonlinear analysis, Amer. Math. Soc. Transl., 10 (1958), 345-409.
|
[18] |
W. H. Lin, A. Kulkarni and P. Mirchandani, Short-time arterial travel time prediction for advanced traveler infromation systems, J. Intel. Transportation Sys., 8 (2004), 143-154. Google Scholar |
[19] |
C. P. Li and F. R. Zhang,
A survey on the stability of fractional differential equations, Eur. Phys. J. Special Topics, 193 (2011), 27-47.
doi: 10.1140/epjst/e2011-01379-1. |
[20] |
T. Maraaba, F. Jarad and D. Baleanu,
On the existence and the uniqueness theorem for fractional differential equations with bounded delay within caputo derivatives, Sci. China Ser. A, 51 (2008), 1775-1786.
doi: 10.1007/s11425-008-0068-1. |
[21] |
T. Maraaba, D. Baleanu and F. Jarad,
Existence and uniqueness theorem for a class of delay differential equations with left and right caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507, 11pp.
doi: 10.1063/1.2970709. |
[22] |
M. L. Morgado, N. J. Ford and P. M. Lima,
Analysis and numerical methods for fractional differential equations with delay, J. Comput. Appl. Math., 252 (2013), 159-168.
doi: 10.1016/j.cam.2012.06.034. |
[23] |
B. P. Moghaddam and Z. S. Mostaghim,
A numerical method based on finite difference for solving fractional delay differential equations, J. Taibah Univ. Sci., 7 (2013), 120-127.
doi: 10.1016/j.jtusci.2013.07.002. |
[24] |
A. Nagumey and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications, Springer, New York, 1996.
doi: 10.1007/978-1-4615-2301-7.![]() |
[25] |
N. Ozalp and I. Koca,
A fractional order nonlinear dynamical model of interpersonal relationships, Adv. Difference Equat., 2012 (2012), 7pp.
doi: 10.1186/1687-1847-2012-189. |
[26] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
![]() |
[27] |
S. B. Skaar, A. N. Michel and R. K. Miller,
Stability of viscoelastic control systems, IEEE Trans. Automat. Control, 33 (1988), 348-357.
doi: 10.1109/9.192189. |
[28] |
W. Y. Szeto and H. K. Lo,
The impact of advanced traveler information services on travel time and schedule delay costs, J. Intel. Transportation Sys., 9 (2007), 47-55.
doi: 10.1080/15472450590916840. |
[29] |
L. Song, S. Y. Xu and J. Y. Yang,
Dynamical models of happiness with fractional order, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 616-628.
doi: 10.1016/j.cnsns.2009.04.029. |
[30] |
P. J. Torvik and R. L. Bagley,
On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294-298.
doi: 10.1115/1.3167615. |
[31] |
Z. Wang, A numerical method for delayed fractional-order differential equations,
J. Appl. Math. , 2013 (2013), Article ID 256071, 7 pages. |
[32] |
X. K. Wu, Z. B. Wu and Y. Z. Zou,
Existence, uniqueness and stability for a class of interval projective dynamical systems, Comm. Appl. Nonlinear Anal., 20 (2013), 81-94.
|
[33] |
Z. B. Wu and Y. Z. Zou,
Stability analysis of two related projective dynamical systems in Hilbert spaces, Nonlinear Anal. Forum, 19 (2014), 37-51.
|
[34] |
Z. B. Wu and Y. Z. Zou,
Global fraction-order projective dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2811-2819.
doi: 10.1016/j.cnsns.2014.01.007. |
[35] |
Z. B. Wu, Y. Z. Zou and N. J. Huang,
A system of fractional-order interval projection neural networks, J. Comput. Appl. Math., 294 (2016), 389-402.
doi: 10.1016/j.cam.2015.09.007. |
[36] |
Z. B. Wu, Y. Z. Zou and N. J. Huang,
A class of global fractional-order projective dynamical systems involving set-valued perturbations, Appl. Math. Comput., 277 (2016), 23-33.
doi: 10.1016/j.amc.2015.12.033. |
[37] |
Z. B. Wu, J. D. Li and N. J. Huang, A new system of global fractional-order interval implicit projection neural networks, Neurocomputing, 282 (2018), 111-121. Google Scholar |
[38] |
Z. B. Wu, C. Min and N. J. Huang,
On a system of fuzzy fractional differential inclusions with projection operators, Fuzzy Sets Syst., 347 (2018), 70-88.
doi: 10.1016/j.fss.2018.01.005. |
[39] |
Y. S. Xia and T. L. Vincent,
On the stability of global projected dynamical systems, J. Optim. Theory Appl., 106 (2000), 129-150.
doi: 10.1023/A:1004611224835. |
[40] |
Y. S. Xia,
Further results on global convergence and stability of global projected dynamical systems, J. Optim. Theory Appl., 122 (2004), 627-649.
doi: 10.1023/B:JOTA.0000042598.21226.af. |
[41] |
Z. H. Yang and J. D. Cao,
Initial value problems for arbitrary order fractional differential equations with delay, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2993-3005.
doi: 10.1016/j.cnsns.2013.03.006. |
[42] |
D. Zhang and A. Nagurney,
On the stability of projected dynamical systems, J. Optim. Theory Appl., 85 (1995), 97-124.
doi: 10.1007/BF02192301. |
[43] |
X. M. Zhao and G. Orosz,
Nonlinear day-to-day traffic dynamics with driver experience delay: Modeling, stability and bifurcation analysis, Phys. D, 275 (2014), 54-66.
doi: 10.1016/j.physd.2014.02.005. |
[44] |
Y. Zhou, F. Jiao and J. Li,
Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal., 71 (2009), 3249-3256.
doi: 10.1016/j.na.2009.01.202. |
[45] |
Y. Z. Zou, X. Li, N. J. Huang and C. Y. Sun, Global dynamical systems involving generalized $f$-projection operators and set-valued perturbation in Banach spaces,
J. Appl. Math. , 2012 (2012), Article ID 682465, 12 pages. |
[46] |
Y. Z. Zou and C. Y. Sun,
Equilibrium points for two related projective dynamical systems, Comm. Appl. Nonlinear Anal., 19 (2012), 111-119.
|
[47] |
Y. Z. Zou, X. K. Wu, W. B. Zhang and C. Y. Sun,
An iterative method for a class of generalized global dynamical system involving fuzzy mappings in Hilbert spaces, Lecture Notes in Commput. Sci., 7666 (2012), 44-51.
doi: 10.1007/978-3-642-34478-7_6. |

[1] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[2] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[3] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[4] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[5] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[6] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[7] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[8] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[9] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[10] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[11] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[12] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[13] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020027 |
[14] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[15] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[16] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[17] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[18] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[19] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[20] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]