
-
Previous Article
Identification and robustness analysis of nonlinear hybrid dynamical system of genetic regulation in continuous culture
- JIMO Home
- This Issue
-
Next Article
Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching
A two-warehouse probabilistic model with price discount on backorders under two levels of trade-credit policy
1. | Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore-721102, West Bengal, India |
2. | Faculty of Engineering Management, Chair of Marketing and Economic Engineering, Poznan University of Technology, ul. Strzelecka 11, 60-965 Poznan, Poland |
It is impossible in this competitive era to assess the demand for items in advance. So, it is essential to refer to a stochastic demand function. In this paper, a probabilistic inventory model for deteriorating items is unfolded. Here, the supplier as well as the retailer adopt the trade-credit policy for their customers with the aim of promoting the market competition. Shortages are included into the model, and when stock on hand is zero, the retailer offers a price discount to those customers who are willing to back-order their demands. We consider two different warehouses in which the first one is an Own Warehouse (OW) where the deterioration is constant over time and the other is a Rented Warehouse (RW), and where the deterioration rate follows a Weibull distribution. An algorithm is provided for finding the solutions of the formulated model.Global convexity of the cost function is established which shows that our proposed model is very helpful for any supplier or retailer to finalize the optimal ordering policy. Beside of this, we target to increase the total profit for retailer by reducing the corresponding total inventory cost. The theoretical concept is justified with the help of some numerical examples. A sensitivity analysis of the optimal solution with respect to the major parameters is also provided in order to stabilize our model. We finalize the paper through a conclusion and a preview onto possible future studies.
References:
[1] |
S. P. Aggarwal and C. K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments, The Journal of the Operational Research Society, 46 (1995), 658-662. Google Scholar |
[2] |
B. Bank, J. Guddat, B. Kummer and K. Tammer,
Non-Linear Parametric Optimization, Birkhäuser, Basel, 2014.
doi: 10.1007/978-3-0348-6328-5. |
[3] |
L. Benkherouf,
A deterministic order level inventory model for deteriorating items with two storage facilities, International Journal of Production Economics, 48 (1997), 167-175.
doi: 10.1016/S0925-5273(96)00070-9. |
[4] |
A. K. Bhunia, C. K. Jaggi, A. Sharma and R. Sharma,
A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging, Applied Mathematics and Computation, 232 (2014), 1125-1137.
doi: 10.1016/j.amc.2014.01.115. |
[5] |
A. K. Bhunia and M. Maiti, A two-warehouse inventory model for a linear trend in demand, Opsearch, 31 (1994), 318-329. Google Scholar |
[6] |
T. Chakrabarty, B. C. Giri and K. S. Chaudhuri,
An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: An extension of Philip's model, Computers & Operations Research, 25 (1998), 649-657.
doi: 10.1016/S0305-0548(97)00081-6. |
[7] |
K. Chung and T. Huang,
The optimal retailer's ordering policies for deteriorating items with limited storage capacity under trade credit financing, International Journal of Production Economics, 106 (2007), 127-145.
doi: 10.1016/j.ijpe.2006.05.008. |
[8] |
K. J. Chung and J. J. Liao,
Lot-sizing decisions under trade credit depending on the ordering quantity, Computers and Operations Research, 31 (2004), 909-928.
doi: 10.1016/S0305-0548(03)00043-1. |
[9] |
R. P. Covert and G. S. Philip,
An EOQ model for items with Weibull distribution deterioration, AIIE Transactions, 5 (1973), 323-326.
doi: 10.1080/05695557308974918. |
[10] |
D. Das, M. B. Kar, A. Roy and S. Kar,
Two-warehouse production model for deteriorating inventory items with stock-dependent demand under inflation over a random planning horizon, Central European Journal of Operations Research, 20 (2012), 251-280.
doi: 10.1007/s10100-010-0165-4. |
[11] |
T. K. Datta and A. K. Pal,
Order level inventory system with power demand pattern for items with variable rate of deterioration, Indian Journal of Pure and Applied Mathematics, 19 (1988), 1043-1053.
|
[12] |
L. N. De and A. Goswami,
Probabilistic EOQ model for deteriorating items under trade credit financing, International Journal of System Science, 40 (2009), 335-346.
doi: 10.1080/00207720802435663. |
[13] |
P. M. Ghare and G. P. Schrader, A model for an exponentially decaying inventory, Journal of Industrial Engineering, 14 (1963), 238-243. Google Scholar |
[14] |
M. Ghoreishi, G. W. Weber and A. Mirzazadeh,
An inventory model for non-instantaneous deteriorating items with partial backlogging, permissible delay in payments, inflation and selling price-dependent demand and customer returns, Annals of Operations Research, 226 (2015), 221-238.
doi: 10.1007/s10479-014-1739-7. |
[15] |
A. Goswami and K. S. Chaudhuri, An economic order quantity model for items with two levels of storage for a linear trend in demand, Journal of the Operational Research Society, 43 (1992), 157-167. Google Scholar |
[16] |
S. K. Goyal, Economic order quantity under conditions of permissible delay in payments, Journal of Operational Research Society, 36 (1985), 335-338. Google Scholar |
[17] |
V. R. Hartely, Operations Research - A Managerial Emphasis, Chapter 12, Good Year, Santa Monica, CA, (1976), 315-317. Google Scholar |
[18] |
C. K. Jaggi, L. E. Cárdenas-Barrón, S. Tiwari and A. A. Shafi,
Two-warehouse inventory model for deteriorating items with imperfect quality under the conditions of permissible delay in payments, Scientia Iranica E, 24 (2017), 390-412.
doi: 10.24200/sci.2017.4042. |
[19] |
H. Th. Jongen and G. W. Weber,
On parametric nonlinear programming, Annals of Operations Research, 27 (1990), 253-284.
doi: 10.1007/BF02055198. |
[20] |
N. K. Kaliraman, R. Raj, S. Chandra and H. Chaudhary,
Two warehouse inventory model for deteriorating item with exponential demand rate and permissible delay in payment, Yugoslav Journal of Operations Research, 27 (2017), 109-124.
doi: 10.2298/YJOR150404007K. |
[21] |
N. A. Kurdhi, J. Prasetyo and S. S. Handajani,
An inventory model involving back-order price discount when the amount received is uncertain, International Journal of Systems Science, 47 (2016), 662-671.
doi: 10.1080/00207721.2014.900136. |
[22] |
M. Lashgari, A. A. Taleizadeh and A. Ahmadi,
Partial up-stream advanced payment and partial down-stream delayed payment in a three-level supply chain, Annals of Operations Research, 238 (2016), 329-354.
doi: 10.1007/s10479-015-2100-5. |
[23] |
L. Y. Ouyang, C. T. Chang and P. Shum, The inter-dependent reductions of lead time and ordering cost in periodic review inventory model with backorder price discount, International Journal of Information and Management Sciences(3), 18 (2007), 195-208. Google Scholar |
[24] |
M. Palanivel, R. Sundararajan and R. Uthayakumar,
Two-warehouse inventory model with non-instantaneously deteriorating items, stock-dependent demand, shortages and inflation, Journal of Management Analytics, 3 (2016), 152-173.
doi: 10.1080/23270012.2016.1145078. |
[25] |
M. Pervin, G. C. Mahata and S. K. Roy,
An inventory model with demand declining market for deteriorating items under trade credit policy, International Journal of Management Science and Engineering Management, 11 (2016), 243-251.
doi: 10.1080/17509653.2015.1081082. |
[26] |
M. Pervin, S. K. Roy and G. W. Weber,
Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Annals of Operations Research, 260 (2018), 437-460.
doi: 10.1007/s10479-016-2355-5. |
[27] |
M. Pervin, S. K. Roy and G. W. Weber,
An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numerical Algebra, Control and Optimization, 8 (2018), 169-191.
doi: 10.3934/naco.2018010. |
[28] |
M. Pervin, S. K. Roy and G. W. Weber, Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy,
Journal of Industrial and Management Optimization, (2018).
doi: 10.3934/jimo.2018098. |
[29] |
M. Pervin, S. K. Roy and G. W. Weber,
A Two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numerical Algebra, Control and Optimization, 7 (2017), 21-50.
doi: 10.3934/naco.2017002. |
[30] |
J. Ray and K. S. Chaudhuri,
An EOQ model with stock-dependent demand, shortage, inflation and time discounting, International Journal of Production Economics, 53 (1997), 171-180.
doi: 10.1016/S0925-5273(97)00112-6. |
[31] |
B. Sarkar, B. Mandal and S. Sarkar,
Quality improvement and backorder price discount under controllable lead time in an inventory model, Journal of Manufacturing Systems, 35 (2015), 26-36.
doi: 10.1016/j.jmsy.2014.11.012. |
[32] |
B. Sarkar, B. Mandal and S. Sarkar,
Preservation of deteriorating seasonal products with stock-dependent consumption rate and shortages, Journal of Industrial and Management Optimization, 13 (2017), 187-206.
doi: 10.3934/jimo.2016011. |
[33] |
K. V. S. Sarma, A deterministic inventory model with two level of storage and an optimum release rule, Opsearch, 20 (1983), 175-180. Google Scholar |
[34] |
S. Shabani, A. Mirzazadeh and E. Sharifi, A two-warehouse inventory model with fuzzy deterioratinn rate and fuzzy demand rate under conditionally permissible delay in payment, Journal of Industrial and Production Engineering(2), 33 (2016), 134-142. Google Scholar |
[35] |
N. H. Shah,
Probabilistic order level system with lead time when delay in payments are permissible, TOP, 5 (1997), 297-305.
doi: 10.1007/BF02568555. |
[36] |
N. H. Shah and Y. K. Shah,
A discrete-in-time probabilistic inventory model for deteriorating items under conditions of permissible delay in payments, International Journal of System Science, 29 (1998), 121-125.
doi: 10.1080/00207729808929504. |
[37] |
S. Singh, J. Sharma and S. Singh, Profit maximizing probabilistic inventory model under the effect of permissible delay, International Multi Conference of Engineers and Computer Scientists, 3 (2010), 17-19. Google Scholar |
[38] |
A. A. Taleizadeh and M. Noori-daryan,
Pricing, manufacturing and inventory policies for raw material in a three-level supply chain, International Journal of Systems Science, 47 (2016), 919-931.
doi: 10.1080/00207721.2014.909544. |
[39] |
G. W. Weber,
On the topology of parametric optimal control, Journal of the Australian Mathematical Society, Series B, 39 (1997), 1-35.
doi: 10.1017/S033427000000775X. |
[40] |
H. Yang,
Two-warehouse inventory models for deteriorating items with shortages under inflation, European Journal of Operational Research, 157 (2006), 344-356.
doi: 10.1016/S0377-2217(03)00221-2. |
[41] |
H. L. Yang and C. T. Chang,
A two-warehouse partial backlogging inventory model for deteriorating items with permissible delay in payment under inflation, Applied Mathematical Modelling, 37 (2013), 2717-2726.
doi: 10.1016/j.apm.2012.05.008. |
show all references
References:
[1] |
S. P. Aggarwal and C. K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments, The Journal of the Operational Research Society, 46 (1995), 658-662. Google Scholar |
[2] |
B. Bank, J. Guddat, B. Kummer and K. Tammer,
Non-Linear Parametric Optimization, Birkhäuser, Basel, 2014.
doi: 10.1007/978-3-0348-6328-5. |
[3] |
L. Benkherouf,
A deterministic order level inventory model for deteriorating items with two storage facilities, International Journal of Production Economics, 48 (1997), 167-175.
doi: 10.1016/S0925-5273(96)00070-9. |
[4] |
A. K. Bhunia, C. K. Jaggi, A. Sharma and R. Sharma,
A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging, Applied Mathematics and Computation, 232 (2014), 1125-1137.
doi: 10.1016/j.amc.2014.01.115. |
[5] |
A. K. Bhunia and M. Maiti, A two-warehouse inventory model for a linear trend in demand, Opsearch, 31 (1994), 318-329. Google Scholar |
[6] |
T. Chakrabarty, B. C. Giri and K. S. Chaudhuri,
An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: An extension of Philip's model, Computers & Operations Research, 25 (1998), 649-657.
doi: 10.1016/S0305-0548(97)00081-6. |
[7] |
K. Chung and T. Huang,
The optimal retailer's ordering policies for deteriorating items with limited storage capacity under trade credit financing, International Journal of Production Economics, 106 (2007), 127-145.
doi: 10.1016/j.ijpe.2006.05.008. |
[8] |
K. J. Chung and J. J. Liao,
Lot-sizing decisions under trade credit depending on the ordering quantity, Computers and Operations Research, 31 (2004), 909-928.
doi: 10.1016/S0305-0548(03)00043-1. |
[9] |
R. P. Covert and G. S. Philip,
An EOQ model for items with Weibull distribution deterioration, AIIE Transactions, 5 (1973), 323-326.
doi: 10.1080/05695557308974918. |
[10] |
D. Das, M. B. Kar, A. Roy and S. Kar,
Two-warehouse production model for deteriorating inventory items with stock-dependent demand under inflation over a random planning horizon, Central European Journal of Operations Research, 20 (2012), 251-280.
doi: 10.1007/s10100-010-0165-4. |
[11] |
T. K. Datta and A. K. Pal,
Order level inventory system with power demand pattern for items with variable rate of deterioration, Indian Journal of Pure and Applied Mathematics, 19 (1988), 1043-1053.
|
[12] |
L. N. De and A. Goswami,
Probabilistic EOQ model for deteriorating items under trade credit financing, International Journal of System Science, 40 (2009), 335-346.
doi: 10.1080/00207720802435663. |
[13] |
P. M. Ghare and G. P. Schrader, A model for an exponentially decaying inventory, Journal of Industrial Engineering, 14 (1963), 238-243. Google Scholar |
[14] |
M. Ghoreishi, G. W. Weber and A. Mirzazadeh,
An inventory model for non-instantaneous deteriorating items with partial backlogging, permissible delay in payments, inflation and selling price-dependent demand and customer returns, Annals of Operations Research, 226 (2015), 221-238.
doi: 10.1007/s10479-014-1739-7. |
[15] |
A. Goswami and K. S. Chaudhuri, An economic order quantity model for items with two levels of storage for a linear trend in demand, Journal of the Operational Research Society, 43 (1992), 157-167. Google Scholar |
[16] |
S. K. Goyal, Economic order quantity under conditions of permissible delay in payments, Journal of Operational Research Society, 36 (1985), 335-338. Google Scholar |
[17] |
V. R. Hartely, Operations Research - A Managerial Emphasis, Chapter 12, Good Year, Santa Monica, CA, (1976), 315-317. Google Scholar |
[18] |
C. K. Jaggi, L. E. Cárdenas-Barrón, S. Tiwari and A. A. Shafi,
Two-warehouse inventory model for deteriorating items with imperfect quality under the conditions of permissible delay in payments, Scientia Iranica E, 24 (2017), 390-412.
doi: 10.24200/sci.2017.4042. |
[19] |
H. Th. Jongen and G. W. Weber,
On parametric nonlinear programming, Annals of Operations Research, 27 (1990), 253-284.
doi: 10.1007/BF02055198. |
[20] |
N. K. Kaliraman, R. Raj, S. Chandra and H. Chaudhary,
Two warehouse inventory model for deteriorating item with exponential demand rate and permissible delay in payment, Yugoslav Journal of Operations Research, 27 (2017), 109-124.
doi: 10.2298/YJOR150404007K. |
[21] |
N. A. Kurdhi, J. Prasetyo and S. S. Handajani,
An inventory model involving back-order price discount when the amount received is uncertain, International Journal of Systems Science, 47 (2016), 662-671.
doi: 10.1080/00207721.2014.900136. |
[22] |
M. Lashgari, A. A. Taleizadeh and A. Ahmadi,
Partial up-stream advanced payment and partial down-stream delayed payment in a three-level supply chain, Annals of Operations Research, 238 (2016), 329-354.
doi: 10.1007/s10479-015-2100-5. |
[23] |
L. Y. Ouyang, C. T. Chang and P. Shum, The inter-dependent reductions of lead time and ordering cost in periodic review inventory model with backorder price discount, International Journal of Information and Management Sciences(3), 18 (2007), 195-208. Google Scholar |
[24] |
M. Palanivel, R. Sundararajan and R. Uthayakumar,
Two-warehouse inventory model with non-instantaneously deteriorating items, stock-dependent demand, shortages and inflation, Journal of Management Analytics, 3 (2016), 152-173.
doi: 10.1080/23270012.2016.1145078. |
[25] |
M. Pervin, G. C. Mahata and S. K. Roy,
An inventory model with demand declining market for deteriorating items under trade credit policy, International Journal of Management Science and Engineering Management, 11 (2016), 243-251.
doi: 10.1080/17509653.2015.1081082. |
[26] |
M. Pervin, S. K. Roy and G. W. Weber,
Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Annals of Operations Research, 260 (2018), 437-460.
doi: 10.1007/s10479-016-2355-5. |
[27] |
M. Pervin, S. K. Roy and G. W. Weber,
An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numerical Algebra, Control and Optimization, 8 (2018), 169-191.
doi: 10.3934/naco.2018010. |
[28] |
M. Pervin, S. K. Roy and G. W. Weber, Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy,
Journal of Industrial and Management Optimization, (2018).
doi: 10.3934/jimo.2018098. |
[29] |
M. Pervin, S. K. Roy and G. W. Weber,
A Two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numerical Algebra, Control and Optimization, 7 (2017), 21-50.
doi: 10.3934/naco.2017002. |
[30] |
J. Ray and K. S. Chaudhuri,
An EOQ model with stock-dependent demand, shortage, inflation and time discounting, International Journal of Production Economics, 53 (1997), 171-180.
doi: 10.1016/S0925-5273(97)00112-6. |
[31] |
B. Sarkar, B. Mandal and S. Sarkar,
Quality improvement and backorder price discount under controllable lead time in an inventory model, Journal of Manufacturing Systems, 35 (2015), 26-36.
doi: 10.1016/j.jmsy.2014.11.012. |
[32] |
B. Sarkar, B. Mandal and S. Sarkar,
Preservation of deteriorating seasonal products with stock-dependent consumption rate and shortages, Journal of Industrial and Management Optimization, 13 (2017), 187-206.
doi: 10.3934/jimo.2016011. |
[33] |
K. V. S. Sarma, A deterministic inventory model with two level of storage and an optimum release rule, Opsearch, 20 (1983), 175-180. Google Scholar |
[34] |
S. Shabani, A. Mirzazadeh and E. Sharifi, A two-warehouse inventory model with fuzzy deterioratinn rate and fuzzy demand rate under conditionally permissible delay in payment, Journal of Industrial and Production Engineering(2), 33 (2016), 134-142. Google Scholar |
[35] |
N. H. Shah,
Probabilistic order level system with lead time when delay in payments are permissible, TOP, 5 (1997), 297-305.
doi: 10.1007/BF02568555. |
[36] |
N. H. Shah and Y. K. Shah,
A discrete-in-time probabilistic inventory model for deteriorating items under conditions of permissible delay in payments, International Journal of System Science, 29 (1998), 121-125.
doi: 10.1080/00207729808929504. |
[37] |
S. Singh, J. Sharma and S. Singh, Profit maximizing probabilistic inventory model under the effect of permissible delay, International Multi Conference of Engineers and Computer Scientists, 3 (2010), 17-19. Google Scholar |
[38] |
A. A. Taleizadeh and M. Noori-daryan,
Pricing, manufacturing and inventory policies for raw material in a three-level supply chain, International Journal of Systems Science, 47 (2016), 919-931.
doi: 10.1080/00207721.2014.909544. |
[39] |
G. W. Weber,
On the topology of parametric optimal control, Journal of the Australian Mathematical Society, Series B, 39 (1997), 1-35.
doi: 10.1017/S033427000000775X. |
[40] |
H. Yang,
Two-warehouse inventory models for deteriorating items with shortages under inflation, European Journal of Operational Research, 157 (2006), 344-356.
doi: 10.1016/S0377-2217(03)00221-2. |
[41] |
H. L. Yang and C. T. Chang,
A two-warehouse partial backlogging inventory model for deteriorating items with permissible delay in payment under inflation, Applied Mathematical Modelling, 37 (2013), 2717-2726.
doi: 10.1016/j.apm.2012.05.008. |





Author(s) | Two warehouse | Probabilistic demand | Trade credit | Deterio-rations | Shortage | Price discount |
Datta and Pal (1988) | ||||||
Bhunia and Maiti (1994) | ||||||
Shah and Shah (1998) | ||||||
Shah (1997) | ||||||
Palanivel et al. (2016) | ||||||
Jaggi et al. (2017) | ||||||
Benkherouf (1997) | ||||||
Singh et al. (2010) | ||||||
Kaliraman et al. (2017) | ||||||
Bhunia et al. (2014) | ||||||
Chung and Liao (2004) | ||||||
Yang (2006) | ||||||
De and Goswami (2009) | ||||||
Chung and Huang (2007) | ||||||
Kurdhi et al. (2015) | ||||||
Pervin et al. (2018) | ||||||
Pervin et al. (2017) | ||||||
Goyal (1985) | ||||||
Yang and Chang (2013) | ||||||
Sarkar et al. (2015) | ||||||
Ray and Chaudhuri (1997) | ||||||
Hariga (1995) | ||||||
Our paper |
Author(s) | Two warehouse | Probabilistic demand | Trade credit | Deterio-rations | Shortage | Price discount |
Datta and Pal (1988) | ||||||
Bhunia and Maiti (1994) | ||||||
Shah and Shah (1998) | ||||||
Shah (1997) | ||||||
Palanivel et al. (2016) | ||||||
Jaggi et al. (2017) | ||||||
Benkherouf (1997) | ||||||
Singh et al. (2010) | ||||||
Kaliraman et al. (2017) | ||||||
Bhunia et al. (2014) | ||||||
Chung and Liao (2004) | ||||||
Yang (2006) | ||||||
De and Goswami (2009) | ||||||
Chung and Huang (2007) | ||||||
Kurdhi et al. (2015) | ||||||
Pervin et al. (2018) | ||||||
Pervin et al. (2017) | ||||||
Goyal (1985) | ||||||
Yang and Chang (2013) | ||||||
Sarkar et al. (2015) | ||||||
Ray and Chaudhuri (1997) | ||||||
Hariga (1995) | ||||||
Our paper |
Case | ||||||
0.5 | 0.4 | 0.088 | 521 | 1923.41 | ||
800 | 0.9 | 0.8 | 0.097 | 560 | 1979.05 | |
0.6 | 0.9 | 0.109 | 582 | 1992.16 | ||
0.5 | 0.4 | 0.0896 | 559 | 2075.04 | ||
1000 | 0.9 | 0.8 | 0.0927 | 570 | 2152.00 | |
0.6 | 0.9 | 0.0989 | 590 | 2203.12 | ||
0.5 | 0.4 | 0.0735 | 601 | 2214.07 | ||
1500 | 0.9 | 0.8 | 0.0857 | 647 | 2539.11 | |
0.6 | 0.9 | 0.0875 | 685 | 2886.00 |
Case | ||||||
0.5 | 0.4 | 0.088 | 521 | 1923.41 | ||
800 | 0.9 | 0.8 | 0.097 | 560 | 1979.05 | |
0.6 | 0.9 | 0.109 | 582 | 1992.16 | ||
0.5 | 0.4 | 0.0896 | 559 | 2075.04 | ||
1000 | 0.9 | 0.8 | 0.0927 | 570 | 2152.00 | |
0.6 | 0.9 | 0.0989 | 590 | 2203.12 | ||
0.5 | 0.4 | 0.0735 | 601 | 2214.07 | ||
1500 | 0.9 | 0.8 | 0.0857 | 647 | 2539.11 | |
0.6 | 0.9 | 0.0875 | 685 | 2886.00 |
Parameter | value | ||||||||||
+50 | 600 | 1 | 1.5 | ... | ... | ... | 0.274 | 594 | 2284.24 | +36.64 | |
+20 | 480 | 1 | 1.5 | 2 | ... | ... | 0.240 | 573 | 2170.33 | +28.41 | |
-20 | 320 | 1 | 1.5 | 2 | 2.5 | ... | 0.208 | 557 | 2001.16 | +9.71 | |
-50 | 200 | 1 | 1.5 | 2 | 2.3 | 3 | 0.173 | 529 | 1981.07 | -0.85 | |
+50 | 90 | 1 | 1.5 | ... | ... | ... | 0.198 | 468 | 2478.21 | +27.53 | |
+20 | 72 | 1 | 1.5 | 2 | ... | ... | 0.183 | 450 | 2356.34 | +21.23 | |
-20 | 48 | 1 | 1.5 | 2 | 2.5 | ... | 0.175 | 438 | 2213.08 | +18.73 | |
-50 | 30 | 1 | 1.5 | 2 | 2.5 | 3 | 0.166 | 426 | 2087.60 | +9.39 | |
+50 | 105 | 1 | 1.5 | ... | ... | ... | 0.098 | 537 | 3798.26 | +47.07 | |
+20 | 84 | 1 | 1.5 | 2 | ... | ... | 0.082 | 522 | 3523.65 | +31.67 | |
-20 | 56 | 1 | 1.5 | 2 | 2.5 | ... | 0.076 | 517 | 3247.43 | +23.81 | |
-50 | 35 | 1 | 1.5 | 2 | 2.5 | 3 | 0.680 | 510 | 3068.11 | -1.27 | |
+50 | 1.2 | 1 | 1.5 | ... | ... | ... | 0.176 | 526 | 2109.87 | +28.45 | |
+20 | 0.96 | 1 | 1.5 | 2 | ... | ... | 0.248 | 538 | 2084.21 | +17.39 | |
-20 | 0.64 | 1 | 1.5 | 2 | 2.5 | ... | 0.273 | 559 | 1985.06 | -1.87 | |
-50 | 0.4 | 1 | 1.5 | 2 | 2.5 | 3 | 0.296 | 570 | 1867.30 | -2.64 | |
+50 | 0.075 | 1 | 1.5 | ... | ... | ... | 0.211 | 523 | 2075.32 | +12.37 | |
+20 | 0.06 | 1 | 1.5 | 2 | ... | ... | 0.250 | 538 | 1924.00 | +10.22 | |
-20 | 0.04 | 1 | 1.5 | 2 | 2.5 | ... | 0.310 | 550 | 1775.71 | -0.79 | |
-50 | 0.025 | 1 | 1.5 | 2 | 2.5 | 3 | 0.352 | 567 | 1528.66 | -2.85 | |
+50 | 4.5 | 1 | 1.5 | ... | ... | ... | 0.560 | 413 | 1968.20 | +25.75 | |
+20 | 3.6 | 1 | 1.5 | 2 | ... | ... | 0.581 | 399 | 1876.11 | +10.29 | |
-20 | 2.4 | 1 | 1.5 | 2 | 2.5 | ... | 0.615 | 307 | 1718.53 | -2.20 | |
-50 | 1.5 | 1 | 1.5 | 2 | 2.5 | 3 | 0.672 | 279 | 1528.04 | -5.43 | |
+50 | 0.12 | 1 | 1.5 | ... | ... | ... | 0.736 | 578 | 1727.34 | +24.74 | |
+20 | 0.096 | 1 | 1.5 | 2 | ... | ... | 0.703 | 530 | 1783.05 | +18.42 | |
-20 | 0.064 | 1 | 1.5 | 2 | 2.5 | ... | 0.682 | 492 | 1816.11 | +10.53 | |
-50 | 0.04 | 1 | 1.5 | 2 | 2.5 | 3 | 0.644 | 454 | 1874.20 | -8.64 | |
+50 | 0.725 | 1 | 1.5 | ... | ... | ... | 0.675 | 649 | 2665.93 | +43.25 | |
+20 | 0.6 | 1 | 1.5 | 2 | ... | ... | 0.510 | 687 | 2682.75 | +21.36 | |
-20 | 0.4 | 1 | 1.5 | 2 | 2.5 | ... | 0.509 | 760 | 2789.77 | +13.85 | |
-50 | 0.25 | 1 | 1.5 | 2 | 2.5 | 3 | 0.588 | 781 | 2895.34 | +7.04 | |
+50 | 0.6 | 1 | 1.5 | ... | ... | ... | 0.322 | 300 | 2541.11 | +40.52 | |
+20 | 0.48 | 1 | 1.5 | 2 | ... | ... | 0.379 | 349 | 2562.47 | +37.06 | |
-20 | 0.32 | 1 | 1.5 | 2 | 2.5 | ... | 0.401 | 373 | 2580.63 | -7.43 | |
-50 | 0.2 | 1 | 1.5 | 2 | 2.5 | 3 | 0.419 | 388 | 2558.47 | -8.65 | |
+50 | 15 | 1 | 1.5 | ... | ... | ... | 0.411 | 644 | 1563.72 | +15.27 | |
+20 | 12 | 1 | 1.5 | 2 | ... | ... | 0.458 | 541 | 1571.08 | +9.04 | |
-20 | 8 | 1 | 1.5 | 2 | 2.5 | ... | 0.392 | 520 | 1584.60 | -10.11 | |
-50 | 5 | 1 | 1.5 | 2 | 2.5 | 3 | 0.450 | 501 | 1599.01 | -5.14 | |
+50 | 75 | 1 | 1.5 | ... | ... | ... | 0.749 | 385 | 1932.84 | +29.27 | |
+20 | 60 | 1 | 1.5 | 2 | ... | ... | 0.755 | 337 | 1920.03 | +21.43 | |
-20 | 40 | 1 | 1.5 | 2 | 2.5 | ... | 0.759 | 249 | 1907.32 | +37.19 | |
-50 | 25 | 1 | 1.5 | 2 | 2.5 | 3 | 0.780 | 277 | 1871.92 | +22.48 | |
+50 | 15 | 1 | 1.5 | ... | ... | ... | 0.753 | 495 | 1884.67 | +23.42 | |
+20 | 12 | 1 | 1.5 | 2 | ... | ... | 0.734 | 327 | 1940.59 | +17.99 | |
-20 | 8 | 1 | 1.5 | 2 | 2.5 | ... | 0.690 | 224 | 1982.47 | -2.33 | |
-50 | 5 | 1 | 1.5 | 2 | 2.5 | 3 | 0.638 | 200 | 2027.59 | -7.21 | |
+50 | 1200 | 1 | 1.5 | ... | ... | ... | 0.922 | 540 | 1825.49 | +29.36 | |
+20 | 960 | 1 | 1.5 | 2 | ... | ... | 0.870 | 511 | 1871.52 | +22.15 | |
-20 | 640 | 1 | 1.5 | 2 | 2.5 | ... | 0.761 | 487 | 1905.14 | -5.22 | |
-50 | 400 | 1 | 1.5 | 2 | 2.5 | 3 | 0.739 | 475 | 1917.26 | -9.46 | |
+50 | 75 | 1 | 1.5 | ... | ... | ... | 0.875 | 610 | 1932.34 | +31.06 | |
+20 | 60 | 1 | 1.5 | 2 | ... | ... | 0.852 | 587 | 1956.07 | +26.17 | |
-20 | 40 | 1 | 1.5 | 2 | 2.5 | ... | 0.830 | 551 | 1988.23 | +13.50 | |
-50 | 25 | 1 | 1.5 | 2 | 2.5 | 3 | 0.781 | 513 | 2130.54 | +4.21 |
Parameter | value | ||||||||||
+50 | 600 | 1 | 1.5 | ... | ... | ... | 0.274 | 594 | 2284.24 | +36.64 | |
+20 | 480 | 1 | 1.5 | 2 | ... | ... | 0.240 | 573 | 2170.33 | +28.41 | |
-20 | 320 | 1 | 1.5 | 2 | 2.5 | ... | 0.208 | 557 | 2001.16 | +9.71 | |
-50 | 200 | 1 | 1.5 | 2 | 2.3 | 3 | 0.173 | 529 | 1981.07 | -0.85 | |
+50 | 90 | 1 | 1.5 | ... | ... | ... | 0.198 | 468 | 2478.21 | +27.53 | |
+20 | 72 | 1 | 1.5 | 2 | ... | ... | 0.183 | 450 | 2356.34 | +21.23 | |
-20 | 48 | 1 | 1.5 | 2 | 2.5 | ... | 0.175 | 438 | 2213.08 | +18.73 | |
-50 | 30 | 1 | 1.5 | 2 | 2.5 | 3 | 0.166 | 426 | 2087.60 | +9.39 | |
+50 | 105 | 1 | 1.5 | ... | ... | ... | 0.098 | 537 | 3798.26 | +47.07 | |
+20 | 84 | 1 | 1.5 | 2 | ... | ... | 0.082 | 522 | 3523.65 | +31.67 | |
-20 | 56 | 1 | 1.5 | 2 | 2.5 | ... | 0.076 | 517 | 3247.43 | +23.81 | |
-50 | 35 | 1 | 1.5 | 2 | 2.5 | 3 | 0.680 | 510 | 3068.11 | -1.27 | |
+50 | 1.2 | 1 | 1.5 | ... | ... | ... | 0.176 | 526 | 2109.87 | +28.45 | |
+20 | 0.96 | 1 | 1.5 | 2 | ... | ... | 0.248 | 538 | 2084.21 | +17.39 | |
-20 | 0.64 | 1 | 1.5 | 2 | 2.5 | ... | 0.273 | 559 | 1985.06 | -1.87 | |
-50 | 0.4 | 1 | 1.5 | 2 | 2.5 | 3 | 0.296 | 570 | 1867.30 | -2.64 | |
+50 | 0.075 | 1 | 1.5 | ... | ... | ... | 0.211 | 523 | 2075.32 | +12.37 | |
+20 | 0.06 | 1 | 1.5 | 2 | ... | ... | 0.250 | 538 | 1924.00 | +10.22 | |
-20 | 0.04 | 1 | 1.5 | 2 | 2.5 | ... | 0.310 | 550 | 1775.71 | -0.79 | |
-50 | 0.025 | 1 | 1.5 | 2 | 2.5 | 3 | 0.352 | 567 | 1528.66 | -2.85 | |
+50 | 4.5 | 1 | 1.5 | ... | ... | ... | 0.560 | 413 | 1968.20 | +25.75 | |
+20 | 3.6 | 1 | 1.5 | 2 | ... | ... | 0.581 | 399 | 1876.11 | +10.29 | |
-20 | 2.4 | 1 | 1.5 | 2 | 2.5 | ... | 0.615 | 307 | 1718.53 | -2.20 | |
-50 | 1.5 | 1 | 1.5 | 2 | 2.5 | 3 | 0.672 | 279 | 1528.04 | -5.43 | |
+50 | 0.12 | 1 | 1.5 | ... | ... | ... | 0.736 | 578 | 1727.34 | +24.74 | |
+20 | 0.096 | 1 | 1.5 | 2 | ... | ... | 0.703 | 530 | 1783.05 | +18.42 | |
-20 | 0.064 | 1 | 1.5 | 2 | 2.5 | ... | 0.682 | 492 | 1816.11 | +10.53 | |
-50 | 0.04 | 1 | 1.5 | 2 | 2.5 | 3 | 0.644 | 454 | 1874.20 | -8.64 | |
+50 | 0.725 | 1 | 1.5 | ... | ... | ... | 0.675 | 649 | 2665.93 | +43.25 | |
+20 | 0.6 | 1 | 1.5 | 2 | ... | ... | 0.510 | 687 | 2682.75 | +21.36 | |
-20 | 0.4 | 1 | 1.5 | 2 | 2.5 | ... | 0.509 | 760 | 2789.77 | +13.85 | |
-50 | 0.25 | 1 | 1.5 | 2 | 2.5 | 3 | 0.588 | 781 | 2895.34 | +7.04 | |
+50 | 0.6 | 1 | 1.5 | ... | ... | ... | 0.322 | 300 | 2541.11 | +40.52 | |
+20 | 0.48 | 1 | 1.5 | 2 | ... | ... | 0.379 | 349 | 2562.47 | +37.06 | |
-20 | 0.32 | 1 | 1.5 | 2 | 2.5 | ... | 0.401 | 373 | 2580.63 | -7.43 | |
-50 | 0.2 | 1 | 1.5 | 2 | 2.5 | 3 | 0.419 | 388 | 2558.47 | -8.65 | |
+50 | 15 | 1 | 1.5 | ... | ... | ... | 0.411 | 644 | 1563.72 | +15.27 | |
+20 | 12 | 1 | 1.5 | 2 | ... | ... | 0.458 | 541 | 1571.08 | +9.04 | |
-20 | 8 | 1 | 1.5 | 2 | 2.5 | ... | 0.392 | 520 | 1584.60 | -10.11 | |
-50 | 5 | 1 | 1.5 | 2 | 2.5 | 3 | 0.450 | 501 | 1599.01 | -5.14 | |
+50 | 75 | 1 | 1.5 | ... | ... | ... | 0.749 | 385 | 1932.84 | +29.27 | |
+20 | 60 | 1 | 1.5 | 2 | ... | ... | 0.755 | 337 | 1920.03 | +21.43 | |
-20 | 40 | 1 | 1.5 | 2 | 2.5 | ... | 0.759 | 249 | 1907.32 | +37.19 | |
-50 | 25 | 1 | 1.5 | 2 | 2.5 | 3 | 0.780 | 277 | 1871.92 | +22.48 | |
+50 | 15 | 1 | 1.5 | ... | ... | ... | 0.753 | 495 | 1884.67 | +23.42 | |
+20 | 12 | 1 | 1.5 | 2 | ... | ... | 0.734 | 327 | 1940.59 | +17.99 | |
-20 | 8 | 1 | 1.5 | 2 | 2.5 | ... | 0.690 | 224 | 1982.47 | -2.33 | |
-50 | 5 | 1 | 1.5 | 2 | 2.5 | 3 | 0.638 | 200 | 2027.59 | -7.21 | |
+50 | 1200 | 1 | 1.5 | ... | ... | ... | 0.922 | 540 | 1825.49 | +29.36 | |
+20 | 960 | 1 | 1.5 | 2 | ... | ... | 0.870 | 511 | 1871.52 | +22.15 | |
-20 | 640 | 1 | 1.5 | 2 | 2.5 | ... | 0.761 | 487 | 1905.14 | -5.22 | |
-50 | 400 | 1 | 1.5 | 2 | 2.5 | 3 | 0.739 | 475 | 1917.26 | -9.46 | |
+50 | 75 | 1 | 1.5 | ... | ... | ... | 0.875 | 610 | 1932.34 | +31.06 | |
+20 | 60 | 1 | 1.5 | 2 | ... | ... | 0.852 | 587 | 1956.07 | +26.17 | |
-20 | 40 | 1 | 1.5 | 2 | 2.5 | ... | 0.830 | 551 | 1988.23 | +13.50 | |
-50 | 25 | 1 | 1.5 | 2 | 2.5 | 3 | 0.781 | 513 | 2130.54 | +4.21 |
+50 | 75 | 0.725 | 0.6 | 0.12 | 0.165 | 610 | 2685.00 | +25.16 |
+40 | 70 | 0.70 | 0.56 | 0.112 | 0.137 | 589 | 2576.27 | +32.00 |
+30 | 65 | 0.65 | 0.52 | 0.104 | 0.114 | 576 | 2450.08 | +23.76 |
+20 | 60 | 0.6 | 0.48 | 0.096 | 0.105 | 558 | 2329.18 | +21.34 |
+10 | 55 | 0.55 | 0.44 | 0.088 | 0.098 | 543 | 2249.71 | +19.47 |
0 | 50 | 0.5 | 0.4 | 0.08 | 0.089 | 522 | 1923.46 | ... |
-10 | 45 | 0.45 | 0.36 | 0.072 | 0.068 | 516 | 1879.34 | +13.32 |
-20 | 40 | 0.4 | 0.32 | 0.064 | 0.062 | 511 | 1794.11 | -11.06 |
-30 | 35 | 0.35 | 0.28 | 0.056 | 0.058 | 504 | 1720.57 | +5.48 |
-40 | 30 | 0.30 | 0.24 | 0.048 | 0.051 | 497 | 1685.00 | -2.21 |
-50 | 25 | 0.25 | 0.2 | 0.04 | 0.048 | 483 | 1649.27 | -0.23 |
+50 | 75 | 0.725 | 0.6 | 0.12 | 0.165 | 610 | 2685.00 | +25.16 |
+40 | 70 | 0.70 | 0.56 | 0.112 | 0.137 | 589 | 2576.27 | +32.00 |
+30 | 65 | 0.65 | 0.52 | 0.104 | 0.114 | 576 | 2450.08 | +23.76 |
+20 | 60 | 0.6 | 0.48 | 0.096 | 0.105 | 558 | 2329.18 | +21.34 |
+10 | 55 | 0.55 | 0.44 | 0.088 | 0.098 | 543 | 2249.71 | +19.47 |
0 | 50 | 0.5 | 0.4 | 0.08 | 0.089 | 522 | 1923.46 | ... |
-10 | 45 | 0.45 | 0.36 | 0.072 | 0.068 | 516 | 1879.34 | +13.32 |
-20 | 40 | 0.4 | 0.32 | 0.064 | 0.062 | 511 | 1794.11 | -11.06 |
-30 | 35 | 0.35 | 0.28 | 0.056 | 0.058 | 504 | 1720.57 | +5.48 |
-40 | 30 | 0.30 | 0.24 | 0.048 | 0.051 | 497 | 1685.00 | -2.21 |
-50 | 25 | 0.25 | 0.2 | 0.04 | 0.048 | 483 | 1649.27 | -0.23 |
[1] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[2] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[3] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[4] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[5] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[6] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[7] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[8] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[9] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[10] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[11] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[12] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[13] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[14] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[15] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[16] |
Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209 |
[17] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[18] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[19] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[20] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]