-
Previous Article
A new method for ranking decision making units using common set of weights: A developed criterion
- JIMO Home
- This Issue
-
Next Article
Evaluation strategy and mass balance for making decision about the amount of aluminum fluoride addition based on superheat degree
Optimality conditions for multiobjective fractional programming, via convexificators
1. | Department of Mathematics, University of Isfahan, P.O. Box: 81745-163, Isfahan, Iran |
2. | School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran |
In this paper, the idea of convexificators is used to derive the Karush-Kuhn-Tucker necessary optimality conditions for local weak efficient solutions of multiobjective fractional problems involving inequality and equality constraints. In this regard, several well known constraint qualifications are generalized and relationships between them are investigated. Moreover, some examples are provided to clarify our results.
References:
[1] |
V. Azhmyakov,
An approach to controlled mechanical systems based on the multiobjective optimization technique, J. Ind. Manag. Optim., 4 (2008), 697-712.
doi: 10.3934/jimo.2008.4.697. |
[2] |
M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms (3rd ed.), John Wiley and Sons, Inc., Hoboken, New Jersey, 2006.
doi: 10.1002/0471787779. |
[3] |
G. Bigi,
Componentwise versus global approaches to nonsmooth multiobjective optimization, J. Ind. Manag. Optim., 1 (2005), 21-32.
doi: 10.3934/jimo.2005.1.21. |
[4] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983. |
[5] |
C. Chen, T. C. E. Cheng, S. Li and X. Yang,
Nonlinear augmented Lagrangian for nonconvex multiobjective optimization, J. Ind. Manag. Optim., 7 (2011), 151-174.
doi: 10.3934/jimo.2011.7.157. |
[6] |
V. F. Demyanov, Convexification and Concavification of a Positivity Homogeneous Function by the Same Family of Linear Functions, Universia di Pisa, Report 3, 1994. Google Scholar |
[7] |
V. F. Demyanov and V. Jeyakumar,
Hunting for a smaller convex subdifferential, J. Glob. Optim., 10 (1997), 305-326.
doi: 10.1023/A:1008246130864. |
[8] |
V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis, Verlag Peter Leng, Franfurt, 1995. |
[9] |
J. Dutta and S. Chandra,
Convexifcators, generalized convexity and vector optimzation, Optimization, 53 (2004), 77-94.
doi: 10.1080/02331930410001661505. |
[10] |
N. Gadhi,
Necessary and sufficient optimality conditions for fractional multi-objective problems, Optimization, 57 (2008), 527-537.
doi: 10.1080/02331930701455945. |
[11] |
M. Golestani and S. Nobakhtian,
Convexificators and strong Kuhn-Tucker conditions, Comput. Math. Appl., 64 (2012), 550-557.
doi: 10.1016/j.camwa.2011.12.047. |
[12] |
V. Jeyakumar and D. T. Luc,
Approximate Jacobian matrices for nonsmooth continuous maps and C1-optimization, SIAM J. Control Optim., 36 (1998), 1815-1832.
doi: 10.1137/S0363012996311745. |
[13] |
V. Jeyakumar and D. T. Luc,
Nonsmooth calculus, minimality, and monotonicity of convexificators, J. Optim. Theory Appl., 101 (1999), 599-621.
doi: 10.1023/A:1021790120780. |
[14] |
X. F. Li and J. Z. Zhang,
Stronger Kuhn-Tucker type conditions in nonsmooth multiobjective optimization: Locally Lipschitz case, J. Optim. Theory Appl., 127 (2005), 367-388.
doi: 10.1007/s10957-005-6550-9. |
[15] |
Z. A. Liang, H. X. Huang and P. M. Pardalos,
Efficiency conditions and duality for a class of multiobjective fractional programming problems, J. Glob. Optim., 27 (2003), 447-471.
doi: 10.1023/A:1026041403408. |
[16] |
X. J. Long, N. J. Huang and Z. B. Liu,
Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs, J. Ind. Manag. Optim., 4 (2008), 287-298.
doi: 10.3934/jimo.2008.4.287. |
[17] |
D. V. Luu,
Convexificators and necessary conditions for efficiency, Optimization, 63 (2014), 321-335.
doi: 10.1080/02331934.2011.648636. |
[18] |
P. Michel and J. P. Penot,
A generalized derivative for calm and stable functions, Differ. Integr. Equ., 5 (1992), 433-454.
|
[19] |
B. S. Mordukhovich and Y. H. Shao,
On nonconvex subdifferential calculus in Banach space, J. Convex Anal., 2 (1995), 211-227.
|
[20] |
S. Nobakhtian,
Optimality and duality for nonsmooth multiobjective fractional programming with mixed constraints, J. Glob. Optim., 41 (2008), 103-115.
doi: 10.1007/s10898-007-9168-7. |
[21] |
R. T. Rochafellar and R. J. B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[22] |
S. Schaible, A Survey of Fractional Programming, In: S. Schaible, W.T. Ziemba, (eds.) Generalized Concavity in Optimization and Economics, Academic Press, New York, 1981. |
[23] |
J. S. Treiman,
The linear nonconvex generalized gradient and Lagrange multipliers, SIAM J. Optim., 5 (1995), 670-680.
doi: 10.1137/0805033. |
show all references
References:
[1] |
V. Azhmyakov,
An approach to controlled mechanical systems based on the multiobjective optimization technique, J. Ind. Manag. Optim., 4 (2008), 697-712.
doi: 10.3934/jimo.2008.4.697. |
[2] |
M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms (3rd ed.), John Wiley and Sons, Inc., Hoboken, New Jersey, 2006.
doi: 10.1002/0471787779. |
[3] |
G. Bigi,
Componentwise versus global approaches to nonsmooth multiobjective optimization, J. Ind. Manag. Optim., 1 (2005), 21-32.
doi: 10.3934/jimo.2005.1.21. |
[4] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983. |
[5] |
C. Chen, T. C. E. Cheng, S. Li and X. Yang,
Nonlinear augmented Lagrangian for nonconvex multiobjective optimization, J. Ind. Manag. Optim., 7 (2011), 151-174.
doi: 10.3934/jimo.2011.7.157. |
[6] |
V. F. Demyanov, Convexification and Concavification of a Positivity Homogeneous Function by the Same Family of Linear Functions, Universia di Pisa, Report 3, 1994. Google Scholar |
[7] |
V. F. Demyanov and V. Jeyakumar,
Hunting for a smaller convex subdifferential, J. Glob. Optim., 10 (1997), 305-326.
doi: 10.1023/A:1008246130864. |
[8] |
V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis, Verlag Peter Leng, Franfurt, 1995. |
[9] |
J. Dutta and S. Chandra,
Convexifcators, generalized convexity and vector optimzation, Optimization, 53 (2004), 77-94.
doi: 10.1080/02331930410001661505. |
[10] |
N. Gadhi,
Necessary and sufficient optimality conditions for fractional multi-objective problems, Optimization, 57 (2008), 527-537.
doi: 10.1080/02331930701455945. |
[11] |
M. Golestani and S. Nobakhtian,
Convexificators and strong Kuhn-Tucker conditions, Comput. Math. Appl., 64 (2012), 550-557.
doi: 10.1016/j.camwa.2011.12.047. |
[12] |
V. Jeyakumar and D. T. Luc,
Approximate Jacobian matrices for nonsmooth continuous maps and C1-optimization, SIAM J. Control Optim., 36 (1998), 1815-1832.
doi: 10.1137/S0363012996311745. |
[13] |
V. Jeyakumar and D. T. Luc,
Nonsmooth calculus, minimality, and monotonicity of convexificators, J. Optim. Theory Appl., 101 (1999), 599-621.
doi: 10.1023/A:1021790120780. |
[14] |
X. F. Li and J. Z. Zhang,
Stronger Kuhn-Tucker type conditions in nonsmooth multiobjective optimization: Locally Lipschitz case, J. Optim. Theory Appl., 127 (2005), 367-388.
doi: 10.1007/s10957-005-6550-9. |
[15] |
Z. A. Liang, H. X. Huang and P. M. Pardalos,
Efficiency conditions and duality for a class of multiobjective fractional programming problems, J. Glob. Optim., 27 (2003), 447-471.
doi: 10.1023/A:1026041403408. |
[16] |
X. J. Long, N. J. Huang and Z. B. Liu,
Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs, J. Ind. Manag. Optim., 4 (2008), 287-298.
doi: 10.3934/jimo.2008.4.287. |
[17] |
D. V. Luu,
Convexificators and necessary conditions for efficiency, Optimization, 63 (2014), 321-335.
doi: 10.1080/02331934.2011.648636. |
[18] |
P. Michel and J. P. Penot,
A generalized derivative for calm and stable functions, Differ. Integr. Equ., 5 (1992), 433-454.
|
[19] |
B. S. Mordukhovich and Y. H. Shao,
On nonconvex subdifferential calculus in Banach space, J. Convex Anal., 2 (1995), 211-227.
|
[20] |
S. Nobakhtian,
Optimality and duality for nonsmooth multiobjective fractional programming with mixed constraints, J. Glob. Optim., 41 (2008), 103-115.
doi: 10.1007/s10898-007-9168-7. |
[21] |
R. T. Rochafellar and R. J. B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[22] |
S. Schaible, A Survey of Fractional Programming, In: S. Schaible, W.T. Ziemba, (eds.) Generalized Concavity in Optimization and Economics, Academic Press, New York, 1981. |
[23] |
J. S. Treiman,
The linear nonconvex generalized gradient and Lagrange multipliers, SIAM J. Optim., 5 (1995), 670-680.
doi: 10.1137/0805033. |
[1] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[2] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[3] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[4] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[5] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[6] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[7] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[8] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[9] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[10] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020027 |
[11] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[12] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[13] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[14] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[15] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[16] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[17] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[18] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[19] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[20] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]