\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization

Abstract Full Text(HTML) Figure(2) / Table(2) Related Papers Cited by
  • We consider the generalized alternating direction method of multipliers (ADMM) for linearly constrained convex optimization. Many problems derived from practical applications have showed that usually one of the subproblems in the generalized ADMM is hard to solve, thus a special proximal term is added. In the literature, the proximal term can be indefinite which plays a vital role in accelerating numerical performance. In this paper, we are devoted to deriving the optimal lower bound of the proximal parameter and result in the generalized ADMM with optimal indefinite proximal term. The global convergence and the $ O(1/t) $ convergence rate measured by the iteration complexity of the proposed method are proved. Moreover, some preliminary numerical experiments on LASSO and total variation-based denoising problems are presented to demonstrate the efficiency of the proposed method and the advantage of the optimal lower bound.

    Mathematics Subject Classification: Primary: 90C25, 65K05, 49M27.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Sensitivity test on the factor $r$ when $\beta = 1$

    Figure 2.  Sensitivity test on the factor $r$ when $\beta = 5$

    Table 1.  Numerical results for LASSO

    $r=0.3$$r=-0.3$
    $n$ $m$PG-ADMMPID-SADMMIPG-ADMMPG-ADMMPID-SADMMIPG-ADMM
    Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)
    20050065.50.0455.10.0353.90.0366.50.0451.30.0345.00.03
    30080068.00.3557.20.2955.70.2869.00.3553.30.2746.60.24
    300100091.10.6676.90.5575.00.5492.00.6671.00.5162.00.46
    500150080.11.7967.31.4965.91.4681.31.8062.81.3955.01.22
    5002000108.03.3490.72.8288.62.77108.33.3883.62.6073.12.27
    800250085.85.4072.14.5670.54.4387.05.4767.04.2158.73.73
    1000300079.07.4266.36.2264.86.1780.27.5461.95.8454.15.12
    1500500092.822.2277.918.6176.218.2493.922.5172.317.3763.415.22
     | Show Table
    DownLoad: CSV

    Table 2.  Numerical results for TV denoising model

    $r=0.3$$r=-0.3$
    $n$PG-ADMMPID-SADMMIPG-ADMMPG-ADMMPID-SADMMIPG-ADMM
    Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)
    500278.00.03260.70.03258.70.03401.50.05356.60.04339.90.04
    1000325.90.06297.40.05294.60.05464.80.08422.00.08402.30.07
    2000414.90.12380.80.11376.70.11585.30.17533.20.16497.90.15
    3000449.50.20423.90.19418.90.19683.80.31602.70.27573.60.26
    5000488.70.33456.00.30452.30.30730.00.48662.70.44621.70.41
    6000488.10.38456.00.35452.10.35720.70.56642.00.50612.70.47
    8000598.30.59558.20.54553.90.54869.50.85774.70.75729.90.72
    10000609.60.72561.90.66556.70.66877.01.03791.00.93748.70.88
     | Show Table
    DownLoad: CSV
  •   A. Beck  and  M. Teboulle , A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009) , 183-202.  doi: 10.1137/080716542.
      S. Boyd , N. Parikh , E. Chu , B. Peleato  and  J. Eckstein , Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends® Mach. Learn., 3 (2011) , 1-122. 
      E. J. Candès  and  B. Recht , Exact matrix completion via convex optimization, Found. Comput. Math., 9 (2009) , 717-772.  doi: 10.1007/s10208-009-9045-5.
      S. Chen , D. Donoho  and  M. Saunders , Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 20 (1998) , 33-61.  doi: 10.1137/S1064827596304010.
      P. L. Combettes  and  J. C. Pesquet , A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery, IEEE J-STSP., 1 (2008) , 564-574. 
      P. L. Combettes  and  J. C. Pesquet , Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse problems in science and engineering, Springer New York, 49 (2011) , 185-212.  doi: 10.1007/978-1-4419-9569-8_10.
      P. L. Combettes  and  V. R. Wajs , Signal recovery by proximal forwardbackward splitting, SIAM J. Multiscale Model. Simul., 4 (2005) , 1168-1200.  doi: 10.1137/050626090.
      J. Eckstein  and  D. P. Bertsekas , On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992) , 293-318.  doi: 10.1007/BF01581204.
      J. Eckstein  and  Y. Wang , Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives, Pac. J. Optim., 11 (2015) , 619-644. 
      M. J. Fadili  and  J. L. Starck , Monotone operator splitting for optimization problems in sparse recovery, IEEE ICIP., (2009) , 1461-1464. 
      E. X. Fang , B. S. He , H. Liu  and  X. M. Yuan , Generalized alternating direction method of multipliers: new theoretical insights and applications, Math. Prog. Comp., 7 (2015) , 149-187.  doi: 10.1007/s12532-015-0078-2.
      M. A. T. Figueiredo  and  J. M. Bioucas-Dias , Restoration of poissonian images using alternating direction optimization, IEEE T. Image Process., 19 (2010) , 3133-3145.  doi: 10.1109/TIP.2010.2053941.
      D. Gabay  and  B. Mercier , A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2 (1976) , 17-40. 
      B. Gao and F. Ma, Symmetric ADMM with positive-indefinite proximal regularization for linearly constrained convex optimization, Avaliable on http://www.optimization-online.org (2016).
      R. Glowinski , On alternating direction methods of multipliers: A historical perspective, Model. Simul. Optim. Sci. Technol. Comput. Methods Appl. Sci., 34 (2014) , 59-82.  doi: 10.1007/978-94-017-9054-3_4.
      R. Glowinski  and  A. Marrocco , Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires, Revue Fr. Autom. Inf. Rech. Opér., Anal. Numér., 9 (1975) , 41-76. 
      Y. Gu, B. Jiang and D. R. Han, A semi-proximal-based strictly contractive Peaceman-Rachford splitting method, Avaliable on http://www.optimization-online.org (2015).
      B. S. He , A new method for a class of linear variational inequalities, Math. Program., 66 (1994) , 137-144.  doi: 10.1007/BF01581141.
      B. S. He , PPA-like contraction methods for convex optimization: A framework using variational inequality approach, J. Oper. Res. Soc. China, 3 (2015) , 391-420.  doi: 10.1007/s40305-015-0108-9.
      B. S. He , H. Liu , Z. R. Wang  and  X. M. Yuan , A strictly contractive Peaceman-Rachford splitting method for convex programming, SIAM J. Optim., 24 (2014) , 1011-1040.  doi: 10.1137/13090849X.
      B. S. He, F. Ma and X. M. Yuan, Linearized alternating direction method of multipliers via positive-indefinite proximal regularization for convex programming, Avaliable on http://www.optimization-online.org (2016).
      B. S. He, F. Ma and X. M. Yuan, Optimal linearized alternating direction method of multipliers for convex programming, Avaliable on http://www.optimization-online.org (2017).
      B. S. He and X. M. Yuan, Improving an ADMM-like splitting method via positive-indefinite proximal regularization for three-block separable convex minimization, Avaliable on http://www.optimization-online.org (2016).
      B. S. He, F. Ma and X. M. Yuan, Positive-indefnite proximal augmented Lagrangian method and its application to full Jacobian splitting for multi-block separable convex minimization problems, Avaliable on http://www.optimization-online.org (2016).
      B. S. He  and  H. Yang , Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities, Oper. Res. Lett., 23 (1998) , 151-161.  doi: 10.1016/S0167-6377(98)00044-3.
      B. S. He  and  X. M. Yuan , On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers, Numer. Math., 130 (2015) , 567-577.  doi: 10.1007/s00211-014-0673-6.
      M. Li , X. X. Li  and  X. M. Yuan , Convergence analysis of the generalized alternating direction method of multipliers with logarithmic-quadratic proximal regularization, J. Optim. Theory Appl., 164 (2015) , 218-233.  doi: 10.1007/s10957-014-0567-x.
      M. Li , D. F. Sun  and  K. C. Toh , A majorized ADMM with indefinite proximal term for linearly constrained convex composite optimization, SIAM J. Optim., 26 (2016) , 922-950.  doi: 10.1137/140999025.
      X. X. Li , L. L. Mo , X. M. Yuan  and  J. Z. Zhang , Linearized alternating direction method of multipliers for sparse group and fused LASSO models, Comput. Statist. Data Anal., 79 (2014) , 203-221.  doi: 10.1016/j.csda.2014.05.017.
      X. X. Li  and  X. M. Yuan , A proximal strictly contractive Peaceman-Rachford splitting method for convex programming with applications to imaging, SIAM J. Imaging Sci., 8 (2015) , 1332-1365.  doi: 10.1137/14099509X.
      B. Recht , M. Fazel  and  P. A. Parrilo , Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010) , 471-501.  doi: 10.1137/070697835.
      L. I. Rudin , S. Osher  and  E. Fatemi , Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992) , 259-268.  doi: 10.1016/0167-2789(92)90242-F.
      G. Steidl  and  T. Teuber , Removing multiplicative noise by Douglas-Rachford splitting methods, J. Math. Imaging Vis., 36 (2010) , 168-184.  doi: 10.1007/s10851-009-0179-5.
      M. Tao  and  X. M. Yuan , Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., 21 (2011) , 57-81.  doi: 10.1137/100781894.
      R. J. Tibshirani , Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996) , 267-288. 
      J. F. Yang  and  X. M. Yuan , Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization, Math. Comp., 82 (2013) , 301-329.  doi: 10.1090/S0025-5718-2012-02598-1.
      X. M. Yuan , Alternating direction method for covariance selection models, J. Sci. Comput., 51 (2012) , 261-273.  doi: 10.1007/s10915-011-9507-1.
      W. X. Zhang , X. J. Cai  and  Z. H. Jia , A proximal alternating linearization method for minimizing the sum of two convex functions, Sci. China Math., 58 (2015) , 1-20.  doi: 10.1007/s11425-015-4986-4.
  • 加载中

Figures(2)

Tables(2)

SHARE

Article Metrics

HTML views(1461) PDF downloads(452) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return