• Previous Article
    An iterated greedy algorithm with variable neighborhood descent for the planning of specialized diagnostic services in a segmented healthcare system
  • JIMO Home
  • This Issue
  • Next Article
    Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks
March  2020, 16(2): 835-856. doi: 10.3934/jimo.2018181

Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization

1. 

School of Mathematical Sciences, Jiangsu Key Labratory for NSLSCS, Nanjing Normal University, Nanjing 210023, China

2. 

School of Economics and Management, Southeast University, Nanjing, 210096, China

Received  January 2018 Revised  July 2018 Published  December 2018

We consider the generalized alternating direction method of multipliers (ADMM) for linearly constrained convex optimization. Many problems derived from practical applications have showed that usually one of the subproblems in the generalized ADMM is hard to solve, thus a special proximal term is added. In the literature, the proximal term can be indefinite which plays a vital role in accelerating numerical performance. In this paper, we are devoted to deriving the optimal lower bound of the proximal parameter and result in the generalized ADMM with optimal indefinite proximal term. The global convergence and the $ O(1/t) $ convergence rate measured by the iteration complexity of the proposed method are proved. Moreover, some preliminary numerical experiments on LASSO and total variation-based denoising problems are presented to demonstrate the efficiency of the proposed method and the advantage of the optimal lower bound.

Citation: Fan Jiang, Zhongming Wu, Xingju Cai. Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization. Journal of Industrial & Management Optimization, 2020, 16 (2) : 835-856. doi: 10.3934/jimo.2018181
References:
[1]

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.  doi: 10.1137/080716542.  Google Scholar

[2]

S. BoydN. ParikhE. ChuB. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends® Mach. Learn., 3 (2011), 1-122.   Google Scholar

[3]

E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., 9 (2009), 717-772.  doi: 10.1007/s10208-009-9045-5.  Google Scholar

[4]

S. ChenD. Donoho and M. Saunders, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 20 (1998), 33-61.  doi: 10.1137/S1064827596304010.  Google Scholar

[5]

P. L. Combettes and J. C. Pesquet, A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery, IEEE J-STSP., 1 (2008), 564-574.   Google Scholar

[6]

P. L. Combettes and J. C. Pesquet, Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse problems in science and engineering, Springer New York, 49 (2011), 185-212.  doi: 10.1007/978-1-4419-9569-8_10.  Google Scholar

[7]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forwardbackward splitting, SIAM J. Multiscale Model. Simul., 4 (2005), 1168-1200.  doi: 10.1137/050626090.  Google Scholar

[8]

J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), 293-318.  doi: 10.1007/BF01581204.  Google Scholar

[9]

J. Eckstein and Y. Wang, Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives, Pac. J. Optim., 11 (2015), 619-644.   Google Scholar

[10]

M. J. Fadili and J. L. Starck, Monotone operator splitting for optimization problems in sparse recovery, IEEE ICIP., (2009), 1461-1464.   Google Scholar

[11]

E. X. FangB. S. HeH. Liu and X. M. Yuan, Generalized alternating direction method of multipliers: new theoretical insights and applications, Math. Prog. Comp., 7 (2015), 149-187.  doi: 10.1007/s12532-015-0078-2.  Google Scholar

[12]

M. A. T. Figueiredo and J. M. Bioucas-Dias, Restoration of poissonian images using alternating direction optimization, IEEE T. Image Process., 19 (2010), 3133-3145.  doi: 10.1109/TIP.2010.2053941.  Google Scholar

[13]

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2 (1976), 17-40.   Google Scholar

[14]

B. Gao and F. Ma, Symmetric ADMM with positive-indefinite proximal regularization for linearly constrained convex optimization, Avaliable on http://www.optimization-online.org (2016). Google Scholar

[15]

R. Glowinski, On alternating direction methods of multipliers: A historical perspective, Model. Simul. Optim. Sci. Technol. Comput. Methods Appl. Sci., 34 (2014), 59-82.  doi: 10.1007/978-94-017-9054-3_4.  Google Scholar

[16]

R. Glowinski and A. Marrocco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires, Revue Fr. Autom. Inf. Rech. Opér., Anal. Numér., 9 (1975), 41-76.   Google Scholar

[17]

Y. Gu, B. Jiang and D. R. Han, A semi-proximal-based strictly contractive Peaceman-Rachford splitting method, Avaliable on http://www.optimization-online.org (2015). Google Scholar

[18]

B. S. He, A new method for a class of linear variational inequalities, Math. Program., 66 (1994), 137-144.  doi: 10.1007/BF01581141.  Google Scholar

[19]

B. S. He, PPA-like contraction methods for convex optimization: A framework using variational inequality approach, J. Oper. Res. Soc. China, 3 (2015), 391-420.  doi: 10.1007/s40305-015-0108-9.  Google Scholar

[20]

B. S. HeH. LiuZ. R. Wang and X. M. Yuan, A strictly contractive Peaceman-Rachford splitting method for convex programming, SIAM J. Optim., 24 (2014), 1011-1040.  doi: 10.1137/13090849X.  Google Scholar

[21]

B. S. He, F. Ma and X. M. Yuan, Linearized alternating direction method of multipliers via positive-indefinite proximal regularization for convex programming, Avaliable on http://www.optimization-online.org (2016). Google Scholar

[22]

B. S. He, F. Ma and X. M. Yuan, Optimal linearized alternating direction method of multipliers for convex programming, Avaliable on http://www.optimization-online.org (2017). Google Scholar

[23]

B. S. He and X. M. Yuan, Improving an ADMM-like splitting method via positive-indefinite proximal regularization for three-block separable convex minimization, Avaliable on http://www.optimization-online.org (2016). Google Scholar

[24]

B. S. He, F. Ma and X. M. Yuan, Positive-indefnite proximal augmented Lagrangian method and its application to full Jacobian splitting for multi-block separable convex minimization problems, Avaliable on http://www.optimization-online.org (2016). Google Scholar

[25]

B. S. He and H. Yang, Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities, Oper. Res. Lett., 23 (1998), 151-161.  doi: 10.1016/S0167-6377(98)00044-3.  Google Scholar

[26]

B. S. He and X. M. Yuan, On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers, Numer. Math., 130 (2015), 567-577.  doi: 10.1007/s00211-014-0673-6.  Google Scholar

[27]

M. LiX. X. Li and X. M. Yuan, Convergence analysis of the generalized alternating direction method of multipliers with logarithmic-quadratic proximal regularization, J. Optim. Theory Appl., 164 (2015), 218-233.  doi: 10.1007/s10957-014-0567-x.  Google Scholar

[28]

M. LiD. F. Sun and K. C. Toh, A majorized ADMM with indefinite proximal term for linearly constrained convex composite optimization, SIAM J. Optim., 26 (2016), 922-950.  doi: 10.1137/140999025.  Google Scholar

[29]

X. X. LiL. L. MoX. M. Yuan and J. Z. Zhang, Linearized alternating direction method of multipliers for sparse group and fused LASSO models, Comput. Statist. Data Anal., 79 (2014), 203-221.  doi: 10.1016/j.csda.2014.05.017.  Google Scholar

[30]

X. X. Li and X. M. Yuan, A proximal strictly contractive Peaceman-Rachford splitting method for convex programming with applications to imaging, SIAM J. Imaging Sci., 8 (2015), 1332-1365.  doi: 10.1137/14099509X.  Google Scholar

[31]

B. RechtM. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), 471-501.  doi: 10.1137/070697835.  Google Scholar

[32]

L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[33]

G. Steidl and T. Teuber, Removing multiplicative noise by Douglas-Rachford splitting methods, J. Math. Imaging Vis., 36 (2010), 168-184.  doi: 10.1007/s10851-009-0179-5.  Google Scholar

[34]

M. Tao and X. M. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., 21 (2011), 57-81.  doi: 10.1137/100781894.  Google Scholar

[35]

R. J. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), 267-288.   Google Scholar

[36]

J. F. Yang and X. M. Yuan, Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization, Math. Comp., 82 (2013), 301-329.  doi: 10.1090/S0025-5718-2012-02598-1.  Google Scholar

[37]

X. M. Yuan, Alternating direction method for covariance selection models, J. Sci. Comput., 51 (2012), 261-273.  doi: 10.1007/s10915-011-9507-1.  Google Scholar

[38]

W. X. ZhangX. J. Cai and Z. H. Jia, A proximal alternating linearization method for minimizing the sum of two convex functions, Sci. China Math., 58 (2015), 1-20.  doi: 10.1007/s11425-015-4986-4.  Google Scholar

show all references

References:
[1]

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.  doi: 10.1137/080716542.  Google Scholar

[2]

S. BoydN. ParikhE. ChuB. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends® Mach. Learn., 3 (2011), 1-122.   Google Scholar

[3]

E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., 9 (2009), 717-772.  doi: 10.1007/s10208-009-9045-5.  Google Scholar

[4]

S. ChenD. Donoho and M. Saunders, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 20 (1998), 33-61.  doi: 10.1137/S1064827596304010.  Google Scholar

[5]

P. L. Combettes and J. C. Pesquet, A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery, IEEE J-STSP., 1 (2008), 564-574.   Google Scholar

[6]

P. L. Combettes and J. C. Pesquet, Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse problems in science and engineering, Springer New York, 49 (2011), 185-212.  doi: 10.1007/978-1-4419-9569-8_10.  Google Scholar

[7]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forwardbackward splitting, SIAM J. Multiscale Model. Simul., 4 (2005), 1168-1200.  doi: 10.1137/050626090.  Google Scholar

[8]

J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), 293-318.  doi: 10.1007/BF01581204.  Google Scholar

[9]

J. Eckstein and Y. Wang, Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives, Pac. J. Optim., 11 (2015), 619-644.   Google Scholar

[10]

M. J. Fadili and J. L. Starck, Monotone operator splitting for optimization problems in sparse recovery, IEEE ICIP., (2009), 1461-1464.   Google Scholar

[11]

E. X. FangB. S. HeH. Liu and X. M. Yuan, Generalized alternating direction method of multipliers: new theoretical insights and applications, Math. Prog. Comp., 7 (2015), 149-187.  doi: 10.1007/s12532-015-0078-2.  Google Scholar

[12]

M. A. T. Figueiredo and J. M. Bioucas-Dias, Restoration of poissonian images using alternating direction optimization, IEEE T. Image Process., 19 (2010), 3133-3145.  doi: 10.1109/TIP.2010.2053941.  Google Scholar

[13]

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2 (1976), 17-40.   Google Scholar

[14]

B. Gao and F. Ma, Symmetric ADMM with positive-indefinite proximal regularization for linearly constrained convex optimization, Avaliable on http://www.optimization-online.org (2016). Google Scholar

[15]

R. Glowinski, On alternating direction methods of multipliers: A historical perspective, Model. Simul. Optim. Sci. Technol. Comput. Methods Appl. Sci., 34 (2014), 59-82.  doi: 10.1007/978-94-017-9054-3_4.  Google Scholar

[16]

R. Glowinski and A. Marrocco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires, Revue Fr. Autom. Inf. Rech. Opér., Anal. Numér., 9 (1975), 41-76.   Google Scholar

[17]

Y. Gu, B. Jiang and D. R. Han, A semi-proximal-based strictly contractive Peaceman-Rachford splitting method, Avaliable on http://www.optimization-online.org (2015). Google Scholar

[18]

B. S. He, A new method for a class of linear variational inequalities, Math. Program., 66 (1994), 137-144.  doi: 10.1007/BF01581141.  Google Scholar

[19]

B. S. He, PPA-like contraction methods for convex optimization: A framework using variational inequality approach, J. Oper. Res. Soc. China, 3 (2015), 391-420.  doi: 10.1007/s40305-015-0108-9.  Google Scholar

[20]

B. S. HeH. LiuZ. R. Wang and X. M. Yuan, A strictly contractive Peaceman-Rachford splitting method for convex programming, SIAM J. Optim., 24 (2014), 1011-1040.  doi: 10.1137/13090849X.  Google Scholar

[21]

B. S. He, F. Ma and X. M. Yuan, Linearized alternating direction method of multipliers via positive-indefinite proximal regularization for convex programming, Avaliable on http://www.optimization-online.org (2016). Google Scholar

[22]

B. S. He, F. Ma and X. M. Yuan, Optimal linearized alternating direction method of multipliers for convex programming, Avaliable on http://www.optimization-online.org (2017). Google Scholar

[23]

B. S. He and X. M. Yuan, Improving an ADMM-like splitting method via positive-indefinite proximal regularization for three-block separable convex minimization, Avaliable on http://www.optimization-online.org (2016). Google Scholar

[24]

B. S. He, F. Ma and X. M. Yuan, Positive-indefnite proximal augmented Lagrangian method and its application to full Jacobian splitting for multi-block separable convex minimization problems, Avaliable on http://www.optimization-online.org (2016). Google Scholar

[25]

B. S. He and H. Yang, Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities, Oper. Res. Lett., 23 (1998), 151-161.  doi: 10.1016/S0167-6377(98)00044-3.  Google Scholar

[26]

B. S. He and X. M. Yuan, On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers, Numer. Math., 130 (2015), 567-577.  doi: 10.1007/s00211-014-0673-6.  Google Scholar

[27]

M. LiX. X. Li and X. M. Yuan, Convergence analysis of the generalized alternating direction method of multipliers with logarithmic-quadratic proximal regularization, J. Optim. Theory Appl., 164 (2015), 218-233.  doi: 10.1007/s10957-014-0567-x.  Google Scholar

[28]

M. LiD. F. Sun and K. C. Toh, A majorized ADMM with indefinite proximal term for linearly constrained convex composite optimization, SIAM J. Optim., 26 (2016), 922-950.  doi: 10.1137/140999025.  Google Scholar

[29]

X. X. LiL. L. MoX. M. Yuan and J. Z. Zhang, Linearized alternating direction method of multipliers for sparse group and fused LASSO models, Comput. Statist. Data Anal., 79 (2014), 203-221.  doi: 10.1016/j.csda.2014.05.017.  Google Scholar

[30]

X. X. Li and X. M. Yuan, A proximal strictly contractive Peaceman-Rachford splitting method for convex programming with applications to imaging, SIAM J. Imaging Sci., 8 (2015), 1332-1365.  doi: 10.1137/14099509X.  Google Scholar

[31]

B. RechtM. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), 471-501.  doi: 10.1137/070697835.  Google Scholar

[32]

L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[33]

G. Steidl and T. Teuber, Removing multiplicative noise by Douglas-Rachford splitting methods, J. Math. Imaging Vis., 36 (2010), 168-184.  doi: 10.1007/s10851-009-0179-5.  Google Scholar

[34]

M. Tao and X. M. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., 21 (2011), 57-81.  doi: 10.1137/100781894.  Google Scholar

[35]

R. J. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), 267-288.   Google Scholar

[36]

J. F. Yang and X. M. Yuan, Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization, Math. Comp., 82 (2013), 301-329.  doi: 10.1090/S0025-5718-2012-02598-1.  Google Scholar

[37]

X. M. Yuan, Alternating direction method for covariance selection models, J. Sci. Comput., 51 (2012), 261-273.  doi: 10.1007/s10915-011-9507-1.  Google Scholar

[38]

W. X. ZhangX. J. Cai and Z. H. Jia, A proximal alternating linearization method for minimizing the sum of two convex functions, Sci. China Math., 58 (2015), 1-20.  doi: 10.1007/s11425-015-4986-4.  Google Scholar

Figure 1.  Sensitivity test on the factor $r$ when $\beta = 1$
Figure 2.  Sensitivity test on the factor $r$ when $\beta = 5$
Table 1.  Numerical results for LASSO
$r=0.3$$r=-0.3$
$n$ $m$PG-ADMMPID-SADMMIPG-ADMMPG-ADMMPID-SADMMIPG-ADMM
Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)
20050065.50.0455.10.0353.90.0366.50.0451.30.0345.00.03
30080068.00.3557.20.2955.70.2869.00.3553.30.2746.60.24
300100091.10.6676.90.5575.00.5492.00.6671.00.5162.00.46
500150080.11.7967.31.4965.91.4681.31.8062.81.3955.01.22
5002000108.03.3490.72.8288.62.77108.33.3883.62.6073.12.27
800250085.85.4072.14.5670.54.4387.05.4767.04.2158.73.73
1000300079.07.4266.36.2264.86.1780.27.5461.95.8454.15.12
1500500092.822.2277.918.6176.218.2493.922.5172.317.3763.415.22
$r=0.3$$r=-0.3$
$n$ $m$PG-ADMMPID-SADMMIPG-ADMMPG-ADMMPID-SADMMIPG-ADMM
Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)
20050065.50.0455.10.0353.90.0366.50.0451.30.0345.00.03
30080068.00.3557.20.2955.70.2869.00.3553.30.2746.60.24
300100091.10.6676.90.5575.00.5492.00.6671.00.5162.00.46
500150080.11.7967.31.4965.91.4681.31.8062.81.3955.01.22
5002000108.03.3490.72.8288.62.77108.33.3883.62.6073.12.27
800250085.85.4072.14.5670.54.4387.05.4767.04.2158.73.73
1000300079.07.4266.36.2264.86.1780.27.5461.95.8454.15.12
1500500092.822.2277.918.6176.218.2493.922.5172.317.3763.415.22
Table 2.  Numerical results for TV denoising model
$r=0.3$$r=-0.3$
$n$PG-ADMMPID-SADMMIPG-ADMMPG-ADMMPID-SADMMIPG-ADMM
Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)
500278.00.03260.70.03258.70.03401.50.05356.60.04339.90.04
1000325.90.06297.40.05294.60.05464.80.08422.00.08402.30.07
2000414.90.12380.80.11376.70.11585.30.17533.20.16497.90.15
3000449.50.20423.90.19418.90.19683.80.31602.70.27573.60.26
5000488.70.33456.00.30452.30.30730.00.48662.70.44621.70.41
6000488.10.38456.00.35452.10.35720.70.56642.00.50612.70.47
8000598.30.59558.20.54553.90.54869.50.85774.70.75729.90.72
10000609.60.72561.90.66556.70.66877.01.03791.00.93748.70.88
$r=0.3$$r=-0.3$
$n$PG-ADMMPID-SADMMIPG-ADMMPG-ADMMPID-SADMMIPG-ADMM
Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)Iter.CPU(s)
500278.00.03260.70.03258.70.03401.50.05356.60.04339.90.04
1000325.90.06297.40.05294.60.05464.80.08422.00.08402.30.07
2000414.90.12380.80.11376.70.11585.30.17533.20.16497.90.15
3000449.50.20423.90.19418.90.19683.80.31602.70.27573.60.26
5000488.70.33456.00.30452.30.30730.00.48662.70.44621.70.41
6000488.10.38456.00.35452.10.35720.70.56642.00.50612.70.47
8000598.30.59558.20.54553.90.54869.50.85774.70.75729.90.72
10000609.60.72561.90.66556.70.66877.01.03791.00.93748.70.88
[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[3]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[4]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[5]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[6]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[7]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[8]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[9]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[10]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[11]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[12]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[13]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[14]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[15]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[16]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[17]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[18]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[19]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[20]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (178)
  • HTML views (810)
  • Cited by (1)

Other articles
by authors

[Back to Top]