|
A. Beck
and M. Teboulle
, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009)
, 183-202.
doi: 10.1137/080716542.
|
|
S. Boyd
, N. Parikh
, E. Chu
, B. Peleato
and J. Eckstein
, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends® Mach. Learn., 3 (2011)
, 1-122.
|
|
E. J. Candès
and B. Recht
, Exact matrix completion via convex optimization, Found. Comput. Math., 9 (2009)
, 717-772.
doi: 10.1007/s10208-009-9045-5.
|
|
S. Chen
, D. Donoho
and M. Saunders
, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 20 (1998)
, 33-61.
doi: 10.1137/S1064827596304010.
|
|
P. L. Combettes
and J. C. Pesquet
, A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery, IEEE J-STSP., 1 (2008)
, 564-574.
|
|
P. L. Combettes
and J. C. Pesquet
, Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse problems in science and engineering, Springer New York, 49 (2011)
, 185-212.
doi: 10.1007/978-1-4419-9569-8_10.
|
|
P. L. Combettes
and V. R. Wajs
, Signal recovery by proximal forwardbackward splitting, SIAM J. Multiscale Model. Simul., 4 (2005)
, 1168-1200.
doi: 10.1137/050626090.
|
|
J. Eckstein
and D. P. Bertsekas
, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992)
, 293-318.
doi: 10.1007/BF01581204.
|
|
J. Eckstein
and Y. Wang
, Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives, Pac. J. Optim., 11 (2015)
, 619-644.
|
|
M. J. Fadili
and J. L. Starck
, Monotone operator splitting for optimization problems in sparse recovery, IEEE ICIP., (2009)
, 1461-1464.
|
|
E. X. Fang
, B. S. He
, H. Liu
and X. M. Yuan
, Generalized alternating direction method of multipliers: new theoretical insights and applications, Math. Prog. Comp., 7 (2015)
, 149-187.
doi: 10.1007/s12532-015-0078-2.
|
|
M. A. T. Figueiredo
and J. M. Bioucas-Dias
, Restoration of poissonian images using alternating direction optimization, IEEE T. Image Process., 19 (2010)
, 3133-3145.
doi: 10.1109/TIP.2010.2053941.
|
|
D. Gabay
and B. Mercier
, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2 (1976)
, 17-40.
|
|
B. Gao and F. Ma, Symmetric ADMM with positive-indefinite proximal regularization for linearly constrained convex optimization, Avaliable on http://www.optimization-online.org (2016).
|
|
R. Glowinski
, On alternating direction methods of multipliers: A historical perspective, Model. Simul. Optim. Sci. Technol. Comput. Methods Appl. Sci., 34 (2014)
, 59-82.
doi: 10.1007/978-94-017-9054-3_4.
|
|
R. Glowinski
and A. Marrocco
, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires, Revue Fr. Autom. Inf. Rech. Opér., Anal. Numér., 9 (1975)
, 41-76.
|
|
Y. Gu, B. Jiang and D. R. Han, A semi-proximal-based strictly contractive Peaceman-Rachford splitting method, Avaliable on http://www.optimization-online.org (2015).
|
|
B. S. He
, A new method for a class of linear variational inequalities, Math. Program., 66 (1994)
, 137-144.
doi: 10.1007/BF01581141.
|
|
B. S. He
, PPA-like contraction methods for convex optimization: A framework using variational inequality approach, J. Oper. Res. Soc. China, 3 (2015)
, 391-420.
doi: 10.1007/s40305-015-0108-9.
|
|
B. S. He
, H. Liu
, Z. R. Wang
and X. M. Yuan
, A strictly contractive Peaceman-Rachford splitting method for convex programming, SIAM J. Optim., 24 (2014)
, 1011-1040.
doi: 10.1137/13090849X.
|
|
B. S. He, F. Ma and X. M. Yuan, Linearized alternating direction method of multipliers via positive-indefinite proximal regularization for convex programming, Avaliable on http://www.optimization-online.org (2016).
|
|
B. S. He, F. Ma and X. M. Yuan, Optimal linearized alternating direction method of multipliers for convex programming, Avaliable on http://www.optimization-online.org (2017).
|
|
B. S. He and X. M. Yuan, Improving an ADMM-like splitting method via positive-indefinite proximal regularization for three-block separable convex minimization, Avaliable on http://www.optimization-online.org (2016).
|
|
B. S. He, F. Ma and X. M. Yuan, Positive-indefnite proximal augmented Lagrangian method and its application to full Jacobian splitting for multi-block separable convex minimization problems, Avaliable on http://www.optimization-online.org (2016).
|
|
B. S. He
and H. Yang
, Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities, Oper. Res. Lett., 23 (1998)
, 151-161.
doi: 10.1016/S0167-6377(98)00044-3.
|
|
B. S. He
and X. M. Yuan
, On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers, Numer. Math., 130 (2015)
, 567-577.
doi: 10.1007/s00211-014-0673-6.
|
|
M. Li
, X. X. Li
and X. M. Yuan
, Convergence analysis of the generalized alternating direction method of multipliers with logarithmic-quadratic proximal regularization, J. Optim. Theory Appl., 164 (2015)
, 218-233.
doi: 10.1007/s10957-014-0567-x.
|
|
M. Li
, D. F. Sun
and K. C. Toh
, A majorized ADMM with indefinite proximal term for linearly constrained convex composite optimization, SIAM J. Optim., 26 (2016)
, 922-950.
doi: 10.1137/140999025.
|
|
X. X. Li
, L. L. Mo
, X. M. Yuan
and J. Z. Zhang
, Linearized alternating direction method of multipliers for sparse group and fused LASSO models, Comput. Statist. Data Anal., 79 (2014)
, 203-221.
doi: 10.1016/j.csda.2014.05.017.
|
|
X. X. Li
and X. M. Yuan
, A proximal strictly contractive Peaceman-Rachford splitting method for convex programming with applications to imaging, SIAM J. Imaging Sci., 8 (2015)
, 1332-1365.
doi: 10.1137/14099509X.
|
|
B. Recht
, M. Fazel
and P. A. Parrilo
, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010)
, 471-501.
doi: 10.1137/070697835.
|
|
L. I. Rudin
, S. Osher
and E. Fatemi
, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992)
, 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
|
G. Steidl
and T. Teuber
, Removing multiplicative noise by Douglas-Rachford splitting methods, J. Math. Imaging Vis., 36 (2010)
, 168-184.
doi: 10.1007/s10851-009-0179-5.
|
|
M. Tao
and X. M. Yuan
, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., 21 (2011)
, 57-81.
doi: 10.1137/100781894.
|
|
R. J. Tibshirani
, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996)
, 267-288.
|
|
J. F. Yang
and X. M. Yuan
, Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization, Math. Comp., 82 (2013)
, 301-329.
doi: 10.1090/S0025-5718-2012-02598-1.
|
|
X. M. Yuan
, Alternating direction method for covariance selection models, J. Sci. Comput., 51 (2012)
, 261-273.
doi: 10.1007/s10915-011-9507-1.
|
|
W. X. Zhang
, X. J. Cai
and Z. H. Jia
, A proximal alternating linearization method for minimizing the sum of two convex functions, Sci. China Math., 58 (2015)
, 1-20.
doi: 10.1007/s11425-015-4986-4.
|