-
Previous Article
Convergence analysis of a new iterative algorithm for solving split variational inclusion problems
- JIMO Home
- This Issue
-
Next Article
Extension of generalized solidarity values to interval-valued cooperative games
A new class of positive semi-definite tensors
1. | Mathematics Department, Southeast University, 2 Sipailou, Nanjing, Jiangsu Province 210096, China |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China |
In this paper, a new class of positive semi-definite tensors, the MO tensor, is introduced. It is inspired by the structure of Moler matrix, a class of test matrices. Then we focus on two special cases in the MO-tensors: Sup-MO tensor and essential MO tensor. They are proved to be positive definite tensors. Especially, the smallest H-eigenvalue of a Sup-MO tensor is positive and tends to zero as the dimension tends to infinity, and an essential MO tensor is also a completely positive tensor.
References:
[1] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[2] |
H. Chen, G. Li and L. Qi,
SOS tensor decomposition: Theory and applications, Commun. Math. Sci., 14 (2016), 2073-2100.
doi: 10.4310/CMS.2016.v14.n8.a1. |
[3] |
A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation, Wiley, New York, 2009.
doi: 10.1002/9780470747278. |
[4] |
D. Hilbert,
Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32 (1888), 342-350.
doi: 10.1007/BF01443605. |
[5] |
C. J. Hillar and L. H. Lim, Most tensor problems are NP-hard, J. ACM, 60 (2013), Art. 45, 39 pp.
doi: 10.1145/2512329. |
[6] |
T. G. Kolda and B. W. Bader,
Tensor decompositions and applications, SIAM Rev., 51 (2009), 455-500.
doi: 10.1137/07070111X. |
[7] |
C. Li, F. Wang, J. Zhao, Y. Zhu and Y. Li,
Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Applied. Math., 255 (2014), 1-14.
doi: 10.1016/j.cam.2013.04.022. |
[8] |
Z. Luo and L. Qi,
Positive semidefinite tensors (in Chinese), Sci. Sin. Math., 46 (2016), 639-654.
|
[9] |
Z. Luo and L. Qi,
Completely positive tensors: Properties, easily checkable subclasses and tractable relaxations, SIAM J. Matrix Anal. Appl., 37 (2016), 1675-1698.
doi: 10.1137/15M1025220. |
[10] |
J. C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, CRC Press, 1990. |
[11] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[12] |
L. Qi,
H$^+$-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci., 12 (2014), 1045-1064.
doi: 10.4310/CMS.2014.v12.n6.a3. |
[13] |
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, 2017.
doi: 10.1137/1.9781611974751. |
[14] |
L. Qi and Y. Song,
An even order symmetric B tensor is positive definite, Linear Algebra Appl., 457 (2014), 303-312.
doi: 10.1016/j.laa.2014.05.026. |
[15] |
L. Qi, C. Xu and Y. Xu,
Nonnegative tensor factorization, completely positive tensors, and a hierarchical elimination algorithm, SIAM J Marix Anal. Appl., 35 (2014), 1227-1241.
doi: 10.1137/13092232X. |
[16] |
L. Qi, G. Yu and E. X. Wu,
Higher order positive semidefinite diffusion tensor imaging, SIAM J Imaging Sci., 3 (2010), 416-433.
doi: 10.1137/090755138. |
[17] |
L. Zhang, L. Qi and G. Zhou,
$M$-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452.
doi: 10.1137/130915339. |
show all references
References:
[1] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[2] |
H. Chen, G. Li and L. Qi,
SOS tensor decomposition: Theory and applications, Commun. Math. Sci., 14 (2016), 2073-2100.
doi: 10.4310/CMS.2016.v14.n8.a1. |
[3] |
A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation, Wiley, New York, 2009.
doi: 10.1002/9780470747278. |
[4] |
D. Hilbert,
Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32 (1888), 342-350.
doi: 10.1007/BF01443605. |
[5] |
C. J. Hillar and L. H. Lim, Most tensor problems are NP-hard, J. ACM, 60 (2013), Art. 45, 39 pp.
doi: 10.1145/2512329. |
[6] |
T. G. Kolda and B. W. Bader,
Tensor decompositions and applications, SIAM Rev., 51 (2009), 455-500.
doi: 10.1137/07070111X. |
[7] |
C. Li, F. Wang, J. Zhao, Y. Zhu and Y. Li,
Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Applied. Math., 255 (2014), 1-14.
doi: 10.1016/j.cam.2013.04.022. |
[8] |
Z. Luo and L. Qi,
Positive semidefinite tensors (in Chinese), Sci. Sin. Math., 46 (2016), 639-654.
|
[9] |
Z. Luo and L. Qi,
Completely positive tensors: Properties, easily checkable subclasses and tractable relaxations, SIAM J. Matrix Anal. Appl., 37 (2016), 1675-1698.
doi: 10.1137/15M1025220. |
[10] |
J. C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, CRC Press, 1990. |
[11] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[12] |
L. Qi,
H$^+$-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci., 12 (2014), 1045-1064.
doi: 10.4310/CMS.2014.v12.n6.a3. |
[13] |
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, 2017.
doi: 10.1137/1.9781611974751. |
[14] |
L. Qi and Y. Song,
An even order symmetric B tensor is positive definite, Linear Algebra Appl., 457 (2014), 303-312.
doi: 10.1016/j.laa.2014.05.026. |
[15] |
L. Qi, C. Xu and Y. Xu,
Nonnegative tensor factorization, completely positive tensors, and a hierarchical elimination algorithm, SIAM J Marix Anal. Appl., 35 (2014), 1227-1241.
doi: 10.1137/13092232X. |
[16] |
L. Qi, G. Yu and E. X. Wu,
Higher order positive semidefinite diffusion tensor imaging, SIAM J Imaging Sci., 3 (2010), 416-433.
doi: 10.1137/090755138. |
[17] |
L. Zhang, L. Qi and G. Zhou,
$M$-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452.
doi: 10.1137/130915339. |
[1] |
Ruixue Zhao, Jinyan Fan. Quadratic tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022073 |
[2] |
Yiju Wang, Guanglu Zhou, Louis Caccetta. Nonsingular $H$-tensor and its criteria. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1173-1186. doi: 10.3934/jimo.2016.12.1173 |
[3] |
Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems and Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052 |
[4] |
Shenglong Hu. A note on the solvability of a tensor equation. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021146 |
[5] |
Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042 |
[6] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems and Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001 |
[7] |
Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial and Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078 |
[8] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[9] |
Fan Wu. Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor. Evolution Equations and Control Theory, 2021, 10 (3) : 511-518. doi: 10.3934/eect.2020078 |
[10] |
Ya Li, ShouQiang Du, YuanYuan Chen. Modified spectral PRP conjugate gradient method for solving tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022, 18 (1) : 157-172. doi: 10.3934/jimo.2020147 |
[11] |
Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013 |
[12] |
Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67 |
[13] |
François Monard. Efficient tensor tomography in fan-beam coordinates. Inverse Problems and Imaging, 2016, 10 (2) : 433-459. doi: 10.3934/ipi.2016007 |
[14] |
Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 429-443. doi: 10.3934/jimo.2018049 |
[15] |
Xia Li, Yong Wang, Zheng-Hai Huang. Continuity, differentiability and semismoothness of generalized tensor functions. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3525-3550. doi: 10.3934/jimo.2020131 |
[16] |
Liqun Qi, Shenglong Hu, Yanwei Xu. Spectral norm and nuclear norm of a third order tensor. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1101-1113. doi: 10.3934/jimo.2021010 |
[17] |
Jin Wang, Jun-E Feng, Hua-Lin Huang. Solvability of the matrix equation $ AX^{2} = B $ with semi-tensor product. Electronic Research Archive, 2021, 29 (3) : 2249-2267. doi: 10.3934/era.2020114 |
[18] |
Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115 |
[19] |
Zhong Wan, Chunhua Yang. New approach to global minimization of normal multivariate polynomial based on tensor. Journal of Industrial and Management Optimization, 2008, 4 (2) : 271-285. doi: 10.3934/jimo.2008.4.271 |
[20] |
François Monard. Efficient tensor tomography in fan-beam coordinates. Ⅱ: Attenuated transforms. Inverse Problems and Imaging, 2018, 12 (2) : 433-460. doi: 10.3934/ipi.2018019 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]