
-
Previous Article
A primal-dual interior-point method capable of rapidly detecting infeasibility for nonlinear programs
- JIMO Home
- This Issue
-
Next Article
An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming
A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China |
It is commonly accepted that the estimation error of asset returns' sample mean is much larger than that of sample covariance. In order to hedge the risk raised by the estimation error of the sample mean, we propose a sparse and robust multi-period mean-variance portfolio selection model and show how this proposed model can be equivalently reformulated as a multi-block nonsmooth convex optimization problem. In order to get an optimal strategy, a symmetric Gauss-Seidel based method is implemented. Moreover, we show that the algorithm is globally linearly convergent. The effectiveness of our portfolio selection model and the efficiency of its solution method are demonstrated by empirical experiments on both the synthetic and real datasets.
References:
[1] |
F. J. Aragón Artacho and M. H. Geoffroy,
Characterization of metric regularity of subdifferentials, Journal of Convex Analysis, 15 (2008), 365-380.
|
[2] |
A. Ben-Tal, T. Margalit and A. Nemirovski,
Robust modeling of multi-stage portfolio problems, High Performance Optimization, 33 (2000), 303-328.
doi: 10.1007/978-1-4757-3216-0_12. |
[3] |
D. Bertsimas and M. Sim,
Tractable approximations to robust conic optimization problems, Mathematical Programming, 107 (2006), 5-36.
doi: 10.1007/s10107-005-0677-1. |
[4] |
J. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, Springer, New York, 2006.
doi: 10.1007/978-0-387-31256-9. |
[5] |
G. C. Calafiore,
Multi-period portfolio optimization with linear control policies, Automatica, 44 (2008), 2463-2473.
doi: 10.1016/j.automatica.2008.02.007. |
[6] |
L. K. Chan, J. Karceski and J. Lakonishok,
On portfolio optimization: Forecasting covariances and choosing the risk model, The Review of Financial Studies, 12 (1999), 937-974.
|
[7] |
C. Chen, B. He, Y. Ye and X. Yuan,
The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Mathematical Programming, 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5. |
[8] |
L. Chen, D. F. Sun and K.-C. Toh,
An efficient inexact symmetric Gauss-Seidel based majorized ADMM for high-dimensional convex composite conic programming, Mathematical Programming, 161 (2017), 237-270.
doi: 10.1007/s10107-016-1007-5. |
[9] |
V. K. Chopra and W. T. Ziemba,
The effect of errors in means, variances, and covariances on optimal portfolio choice, The Journal of Portfolio Management, 19 (1993), 6-11.
|
[10] |
F. H. Clarke, Optimization and Nonsmooth Analysis, volume 5. SIAM, 1990.
doi: 10.1137/1.9781611971309. |
[11] |
L. Condat,
Fast projection onto the simplex and the $\ell_1$ ball, Mathematical Programming, 158 (2016), 575-585.
doi: 10.1007/s10107-015-0946-6. |
[12] |
X. Cui, J. Gao, X. Li and D. Li,
Optimal multi-period mean--variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.
doi: 10.1016/j.ejor.2013.02.040. |
[13] |
G. B. Dantzig and G. Infanger,
Multi-stage stochastic linear programs for portfolio optimization, Annals of Operations Research, 45 (1993), 59-76.
doi: 10.1007/BF02282041. |
[14] |
V. DeMiguel and F. J. Nogales,
Portfolio selection with robust estimation, Operations Research, 57 (2009), 560-577.
doi: 10.1287/opre.1080.0566. |
[15] |
A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer Monographs in Mathematics. Springer, Dordrecht, 2009.
doi: 10.1007/978-0-387-87821-8. |
[16] |
M. Fazel, T. K. Pong, D. F. Sun and P. Tseng,
Hankel matrix rank minimization with applications to system identification and realization, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 946-977.
doi: 10.1137/110853996. |
[17] |
J. Gao and D. Li,
Optimal cardinality constrained portfolio selection, Operations Research, 61 (2013), 745-761.
doi: 10.1287/opre.2013.1170. |
[18] |
N. Gülpinar and B. Rustem,
Worst-case robust decisions for multi-period mean--variance portfolio optimization, European Journal of Operational Research, 183 (2007), 981-1000.
doi: 10.1016/j.ejor.2006.02.046. |
[19] |
W. W. Hager and H. Zhang,
Projection onto a polyhedron that exploits sparsity, SIAM Journal on Optimization, 26 (2016), 1773-1798.
doi: 10.1137/15M102825X. |
[20] |
D. Han, D. F. Sun and L. Zhang,
Linear rate convergence of the alternating direction method of multipliers for convex composite programming, Mathematics of Operations Research, 43 (2018), 622-637.
doi: 10.1287/moor.2017.0875. |
[21] |
R. Jagannathan and T. Ma,
Risk reduction in large portfolios: Why imposing the wrong constraints helps, The Journal of Finance, 58 (2003), 1651-1683.
|
[22] |
J. H. Kim, W. C. Kim and F. J. Fabozzi,
Recent developments in robust portfolios with a worst-case approach, Journal of Optimization Theory and Applications, 161 (2014), 103-121.
doi: 10.1007/s10957-013-0329-1. |
[23] |
H. Konno and H. Yamazaki,
Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 519-531.
|
[24] |
X. Y. Lam, J. Marron, D. Sun and K.-C. Toh,
Fast algorithms for large-scale generalized distance weighted discrimination, Journal of Computational and Graphical Statistics, 27 (2018), 368-379.
doi: 10.1080/10618600.2017.1366915. |
[25] |
X. Li, D. F. Sun and K.-C. Toh, A block symmetric {Gauss--Seidel} decomposition theorem for convex composite quadratic programming and its applications, Mathematical Programming, (2018), 1-24, . |
[26] |
X. D. Li, D. F. Sun and K.-C. Toh,
A schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming, 155 (2016), 333-373.
doi: 10.1007/s10107-014-0850-5. |
[27] |
X. D. Li, D. F. Sun and K.-C. Toh,
QSDPNAL: A two-phase augmented Lagrangian method for convex quadratic semidefinite programming, Mathematical Programming Computation, 10 (2018), 703-743.
doi: 10.1007/s12532-018-0137-6. |
[28] |
H. Markowitz,
Portfolio selection, The Journal of Finance, 7 (1952), 77-91.
|
[29] |
X. Mei, V. DeMiguel and F. J. Nogales,
Multiperiod portfolio optimization with multiple risky assets and general transaction costs, Finance, 69 (2016), 108-120.
|
[30] |
R. O. Michaud,
The markowitz optimization enigma: Is 'optimized' optimal?, Financial Analysts Journal, 45 (1989), 31-42.
|
[31] |
S. M. Robinson,
Some continuity properties of polyhedral multifunctions, Mathematical Programming at Oberwolfach, 14 (1981), 206-214.
doi: 10.1007/bfb0120929. |
[32] |
R. T. Rockafellar,
Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Mathematics of Operations Research, 1 (1976), 97-116.
doi: 10.1287/moor.1.2.97. |
[33] |
R. T. Rockafellar, Convex Analysis, Princeton university press, 1997.
![]() ![]() |
[34] |
R. T. Rockafellar and S. Uryasev,
Optimization of conditional value-at-risk, Journal of risk, 2 (2000), 21-42.
|
[35] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, volume 317, Springer Science & Business Media, 1998. |
[36] |
M. Sion,
On general minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.
doi: 10.2140/pjm.1958.8.171. |
[37] |
D. F. Sun, K.-C. Toh and L. Q. Yang,
A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints, SIAM Journal on Optimization, 25 (2015), 882-915.
doi: 10.1137/140964357. |
[38] |
Y. Sun, G. Aw, K. L. Teo and G. Zhou,
Portfolio optimization using a new probabilistic risk measure, Journal of Industrial and Management Optimization, 11 (2015), 1275-1283.
doi: 10.3934/jimo.2015.11.1275. |
[39] |
R. J.-B. Wets,
Stochastic programs with fixed recourse: The equivalent deterministic program, SIAM Review, 16 (1974), 309-339.
doi: 10.1137/1016053. |
[40] |
J. Yang, D. F. Sun and K.-C. Toh,
A proximal point algorithm for log-determinant optimization with group lasso regularization, SIAM Journal on Optimization, 23 (2013), 857-893.
doi: 10.1137/120864192. |
[41] |
J. J. Ye and X. Y. Ye,
Necessary optimality conditions for optimization problems with variational inequality constraints, Mathematics of Operations Research, 22 (1997), 977-997.
doi: 10.1287/moor.22.4.977. |
[42] |
J. J. Ye and J. Zhang,
Enhanced Karush-Kuhn-Tucker condition and weaker constraint qualifications, Mathematical Programming, 139 (2013), 353-381.
doi: 10.1007/s10107-013-0667-7. |
[43] |
J. Zhai and M. Bai,
Mean-risk model for uncertain portfolio selection with background risk, Journal of Computational and Applied Mathematics, 330 (2018), 59-69.
doi: 10.1016/j.cam.2017.07.038. |
[44] |
Y. Zhang, X. Li and S. Guo,
Portfolio selection problems with markowitz's mean--variance framework: A review of literature, Fuzzy Optimization and Decision Making, 17 (2018), 125-158.
doi: 10.1007/s10700-017-9266-z. |
show all references
References:
[1] |
F. J. Aragón Artacho and M. H. Geoffroy,
Characterization of metric regularity of subdifferentials, Journal of Convex Analysis, 15 (2008), 365-380.
|
[2] |
A. Ben-Tal, T. Margalit and A. Nemirovski,
Robust modeling of multi-stage portfolio problems, High Performance Optimization, 33 (2000), 303-328.
doi: 10.1007/978-1-4757-3216-0_12. |
[3] |
D. Bertsimas and M. Sim,
Tractable approximations to robust conic optimization problems, Mathematical Programming, 107 (2006), 5-36.
doi: 10.1007/s10107-005-0677-1. |
[4] |
J. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, Springer, New York, 2006.
doi: 10.1007/978-0-387-31256-9. |
[5] |
G. C. Calafiore,
Multi-period portfolio optimization with linear control policies, Automatica, 44 (2008), 2463-2473.
doi: 10.1016/j.automatica.2008.02.007. |
[6] |
L. K. Chan, J. Karceski and J. Lakonishok,
On portfolio optimization: Forecasting covariances and choosing the risk model, The Review of Financial Studies, 12 (1999), 937-974.
|
[7] |
C. Chen, B. He, Y. Ye and X. Yuan,
The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Mathematical Programming, 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5. |
[8] |
L. Chen, D. F. Sun and K.-C. Toh,
An efficient inexact symmetric Gauss-Seidel based majorized ADMM for high-dimensional convex composite conic programming, Mathematical Programming, 161 (2017), 237-270.
doi: 10.1007/s10107-016-1007-5. |
[9] |
V. K. Chopra and W. T. Ziemba,
The effect of errors in means, variances, and covariances on optimal portfolio choice, The Journal of Portfolio Management, 19 (1993), 6-11.
|
[10] |
F. H. Clarke, Optimization and Nonsmooth Analysis, volume 5. SIAM, 1990.
doi: 10.1137/1.9781611971309. |
[11] |
L. Condat,
Fast projection onto the simplex and the $\ell_1$ ball, Mathematical Programming, 158 (2016), 575-585.
doi: 10.1007/s10107-015-0946-6. |
[12] |
X. Cui, J. Gao, X. Li and D. Li,
Optimal multi-period mean--variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.
doi: 10.1016/j.ejor.2013.02.040. |
[13] |
G. B. Dantzig and G. Infanger,
Multi-stage stochastic linear programs for portfolio optimization, Annals of Operations Research, 45 (1993), 59-76.
doi: 10.1007/BF02282041. |
[14] |
V. DeMiguel and F. J. Nogales,
Portfolio selection with robust estimation, Operations Research, 57 (2009), 560-577.
doi: 10.1287/opre.1080.0566. |
[15] |
A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer Monographs in Mathematics. Springer, Dordrecht, 2009.
doi: 10.1007/978-0-387-87821-8. |
[16] |
M. Fazel, T. K. Pong, D. F. Sun and P. Tseng,
Hankel matrix rank minimization with applications to system identification and realization, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 946-977.
doi: 10.1137/110853996. |
[17] |
J. Gao and D. Li,
Optimal cardinality constrained portfolio selection, Operations Research, 61 (2013), 745-761.
doi: 10.1287/opre.2013.1170. |
[18] |
N. Gülpinar and B. Rustem,
Worst-case robust decisions for multi-period mean--variance portfolio optimization, European Journal of Operational Research, 183 (2007), 981-1000.
doi: 10.1016/j.ejor.2006.02.046. |
[19] |
W. W. Hager and H. Zhang,
Projection onto a polyhedron that exploits sparsity, SIAM Journal on Optimization, 26 (2016), 1773-1798.
doi: 10.1137/15M102825X. |
[20] |
D. Han, D. F. Sun and L. Zhang,
Linear rate convergence of the alternating direction method of multipliers for convex composite programming, Mathematics of Operations Research, 43 (2018), 622-637.
doi: 10.1287/moor.2017.0875. |
[21] |
R. Jagannathan and T. Ma,
Risk reduction in large portfolios: Why imposing the wrong constraints helps, The Journal of Finance, 58 (2003), 1651-1683.
|
[22] |
J. H. Kim, W. C. Kim and F. J. Fabozzi,
Recent developments in robust portfolios with a worst-case approach, Journal of Optimization Theory and Applications, 161 (2014), 103-121.
doi: 10.1007/s10957-013-0329-1. |
[23] |
H. Konno and H. Yamazaki,
Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 519-531.
|
[24] |
X. Y. Lam, J. Marron, D. Sun and K.-C. Toh,
Fast algorithms for large-scale generalized distance weighted discrimination, Journal of Computational and Graphical Statistics, 27 (2018), 368-379.
doi: 10.1080/10618600.2017.1366915. |
[25] |
X. Li, D. F. Sun and K.-C. Toh, A block symmetric {Gauss--Seidel} decomposition theorem for convex composite quadratic programming and its applications, Mathematical Programming, (2018), 1-24, . |
[26] |
X. D. Li, D. F. Sun and K.-C. Toh,
A schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming, 155 (2016), 333-373.
doi: 10.1007/s10107-014-0850-5. |
[27] |
X. D. Li, D. F. Sun and K.-C. Toh,
QSDPNAL: A two-phase augmented Lagrangian method for convex quadratic semidefinite programming, Mathematical Programming Computation, 10 (2018), 703-743.
doi: 10.1007/s12532-018-0137-6. |
[28] |
H. Markowitz,
Portfolio selection, The Journal of Finance, 7 (1952), 77-91.
|
[29] |
X. Mei, V. DeMiguel and F. J. Nogales,
Multiperiod portfolio optimization with multiple risky assets and general transaction costs, Finance, 69 (2016), 108-120.
|
[30] |
R. O. Michaud,
The markowitz optimization enigma: Is 'optimized' optimal?, Financial Analysts Journal, 45 (1989), 31-42.
|
[31] |
S. M. Robinson,
Some continuity properties of polyhedral multifunctions, Mathematical Programming at Oberwolfach, 14 (1981), 206-214.
doi: 10.1007/bfb0120929. |
[32] |
R. T. Rockafellar,
Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Mathematics of Operations Research, 1 (1976), 97-116.
doi: 10.1287/moor.1.2.97. |
[33] |
R. T. Rockafellar, Convex Analysis, Princeton university press, 1997.
![]() ![]() |
[34] |
R. T. Rockafellar and S. Uryasev,
Optimization of conditional value-at-risk, Journal of risk, 2 (2000), 21-42.
|
[35] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, volume 317, Springer Science & Business Media, 1998. |
[36] |
M. Sion,
On general minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.
doi: 10.2140/pjm.1958.8.171. |
[37] |
D. F. Sun, K.-C. Toh and L. Q. Yang,
A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints, SIAM Journal on Optimization, 25 (2015), 882-915.
doi: 10.1137/140964357. |
[38] |
Y. Sun, G. Aw, K. L. Teo and G. Zhou,
Portfolio optimization using a new probabilistic risk measure, Journal of Industrial and Management Optimization, 11 (2015), 1275-1283.
doi: 10.3934/jimo.2015.11.1275. |
[39] |
R. J.-B. Wets,
Stochastic programs with fixed recourse: The equivalent deterministic program, SIAM Review, 16 (1974), 309-339.
doi: 10.1137/1016053. |
[40] |
J. Yang, D. F. Sun and K.-C. Toh,
A proximal point algorithm for log-determinant optimization with group lasso regularization, SIAM Journal on Optimization, 23 (2013), 857-893.
doi: 10.1137/120864192. |
[41] |
J. J. Ye and X. Y. Ye,
Necessary optimality conditions for optimization problems with variational inequality constraints, Mathematics of Operations Research, 22 (1997), 977-997.
doi: 10.1287/moor.22.4.977. |
[42] |
J. J. Ye and J. Zhang,
Enhanced Karush-Kuhn-Tucker condition and weaker constraint qualifications, Mathematical Programming, 139 (2013), 353-381.
doi: 10.1007/s10107-013-0667-7. |
[43] |
J. Zhai and M. Bai,
Mean-risk model for uncertain portfolio selection with background risk, Journal of Computational and Applied Mathematics, 330 (2018), 59-69.
doi: 10.1016/j.cam.2017.07.038. |
[44] |
Y. Zhang, X. Li and S. Guo,
Portfolio selection problems with markowitz's mean--variance framework: A review of literature, Fuzzy Optimization and Decision Making, 17 (2018), 125-158.
doi: 10.1007/s10700-017-9266-z. |


![]() |
||
sGS-sPADMM Iter |
ADMM-d Iter |
|
200 | 348.8 |
345.9 |
300 | 187.3 |
325.9 |
500 | 175.6 |
275.3 |
1000 | 250.2 |
296.6 |
1500 | 346.7 |
469.4 |
2000 | 406.0 |
585.2 |
![]() |
||
sGS-sPADMM Iter |
ADMM-d Iter |
|
200 | 348.8 |
345.9 |
300 | 187.3 |
325.9 |
500 | 175.6 |
275.3 |
1000 | 250.2 |
296.6 |
1500 | 346.7 |
469.4 |
2000 | 406.0 |
585.2 |
![]() |
||
sGS-sPADMM Iter |
ADMM-d Iter |
|
200 | 386.5 |
349.4 |
300 | 237.4 |
300.8 |
500 | 226.4 |
330.1 |
1000 | 287.0 |
395.2 |
1500 | 387.1 |
561.9 |
2000 | 480.0 |
596.7 |
![]() |
||
sGS-sPADMM Iter |
ADMM-d Iter |
|
200 | 386.5 |
349.4 |
300 | 237.4 |
300.8 |
500 | 226.4 |
330.1 |
1000 | 287.0 |
395.2 |
1500 | 387.1 |
561.9 |
2000 | 480.0 |
596.7 |
Period | nnz | sGS-sPADMM Iter |
ADMM-d Iter |
sPADMM Iter |
|
Jan. | 1.0e-06 | 272 | 284 |
283 |
539 |
5.0e-06 | 171 | 248 |
373 |
715 |
|
1.0e-05 | 112 | 246 |
500 |
850 |
|
Feb. | 1.0e-06 | 288 | 249 |
301 |
464 |
5.0e-06 | 173 | 250 |
321 |
568 | |
1.0e-05 | 125 | 258 |
373 |
701 |
|
Mar. | 1.0e-06 | 269 | 223 |
253 |
484 |
5.0e-06 | 153 | 229 |
310 |
596 | |
1.0e-05 | 122 | 238 |
358 |
594 |
|
Apr. | 1.0e-06 | 272 | 272 |
316 |
573 |
5.0e-06 | 144 | 285 |
477 |
902 | |
1.0e-05 | 108 | 264 |
548 |
915 |
|
May | 1.0e-06 | 244 | 290 |
510 |
941 |
5.0e-06 | 127 | 337 |
635 |
1110 | |
1.0e-05 | 94 | 294 |
765 |
1354 |
|
Jun. | 1.0e-06 | 274 | 281 |
448 |
805 |
5.0e-06 | 151 | 239 |
478 |
911 | |
1.0e-05 | 105 | 386 |
509 |
983 |
Period | nnz | sGS-sPADMM Iter |
ADMM-d Iter |
sPADMM Iter |
|
Jan. | 1.0e-06 | 272 | 284 |
283 |
539 |
5.0e-06 | 171 | 248 |
373 |
715 |
|
1.0e-05 | 112 | 246 |
500 |
850 |
|
Feb. | 1.0e-06 | 288 | 249 |
301 |
464 |
5.0e-06 | 173 | 250 |
321 |
568 | |
1.0e-05 | 125 | 258 |
373 |
701 |
|
Mar. | 1.0e-06 | 269 | 223 |
253 |
484 |
5.0e-06 | 153 | 229 |
310 |
596 | |
1.0e-05 | 122 | 238 |
358 |
594 |
|
Apr. | 1.0e-06 | 272 | 272 |
316 |
573 |
5.0e-06 | 144 | 285 |
477 |
902 | |
1.0e-05 | 108 | 264 |
548 |
915 |
|
May | 1.0e-06 | 244 | 290 |
510 |
941 |
5.0e-06 | 127 | 337 |
635 |
1110 | |
1.0e-05 | 94 | 294 |
765 |
1354 |
|
Jun. | 1.0e-06 | 274 | 281 |
448 |
805 |
5.0e-06 | 151 | 239 |
478 |
911 | |
1.0e-05 | 105 | 386 |
509 |
983 |
|
|
nnz | sGS-sPADMM Iter |
ADMM-d Iter |
sPADMM Iter |
2 | 1.0e-06 | 270 | 473 |
1189 |
1296 |
5.0e-06 | 128 | 636 |
1025 |
1260 |
|
1.0e-05 | 109 | 585 |
1356 |
1234 |
|
3 | 1.0e-06 | 254 | 623 |
1327 |
1362 |
5.0e-06 | 125 | 939 |
1522 |
1346 |
|
1.0e-05 | 103 | 675 |
1484 |
1319 |
|
|
nnz | sGS-sPADMM Iter |
ADMM-d Iter |
sPADMM Iter |
2 | 1.0e-06 | 270 | 473 |
1189 |
1296 |
5.0e-06 | 128 | 636 |
1025 |
1260 |
|
1.0e-05 | 109 | 585 |
1356 |
1234 |
|
3 | 1.0e-06 | 254 | 623 |
1327 |
1362 |
5.0e-06 | 125 | 939 |
1522 |
1346 |
|
1.0e-05 | 103 | 675 |
1484 |
1319 |
|
nnz | sGS-sPADMM Iter |
ADMM-d Iter |
sPADMM Iter |
|
2 | 1.0e-06 | 237 | 490 |
1146 |
1924 |
5.0e-06 | 138 | 681 |
1297 |
1584 |
|
1.0e-05 | 120 | 596 |
1213 |
1569 |
|
3 | 1.0e-06 | 225 | 752 |
810 |
1895 |
5.0e-06 | 133 | 809 |
1057 |
1828 |
|
1.0e-05 | 120 | 648 |
1377 |
2292 |
|
nnz | sGS-sPADMM Iter |
ADMM-d Iter |
sPADMM Iter |
|
2 | 1.0e-06 | 237 | 490 |
1146 |
1924 |
5.0e-06 | 138 | 681 |
1297 |
1584 |
|
1.0e-05 | 120 | 596 |
1213 |
1569 |
|
3 | 1.0e-06 | 225 | 752 |
810 |
1895 |
5.0e-06 | 133 | 809 |
1057 |
1828 |
|
1.0e-05 | 120 | 648 |
1377 |
2292 |
[1] |
Foxiang Liu, Lingling Xu, Yuehong Sun, Deren Han. A proximal alternating direction method for multi-block coupled convex optimization. Journal of Industrial and Management Optimization, 2019, 15 (2) : 723-737. doi: 10.3934/jimo.2018067 |
[2] |
Xin Yang, Nan Wang, Lingling Xu. A parallel Gauss-Seidel method for convex problems with separable structure. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 557-570. doi: 10.3934/naco.2020051 |
[3] |
Yuezheng Gong, Jiaquan Gao, Yushun Wang. High order Gauss-Seidel schemes for charged particle dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 573-585. doi: 10.3934/dcdsb.2018034 |
[4] |
Su-Hong Jiang, Min Li. A modified strictly contractive peaceman-rachford splitting method for multi-block separable convex programming. Journal of Industrial and Management Optimization, 2018, 14 (1) : 397-412. doi: 10.3934/jimo.2017052 |
[5] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial and Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[6] |
Lin Jiang, Changzhi Wu, Song Wang. Distributionally robust multi-period portfolio selection subject to bankruptcy constraints. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021218 |
[7] |
Panchi Li, Zetao Ma, Rui Du, Jingrun Chen. A Gauss-Seidel projection method with the minimal number of updates for the stray field in micromagnetics simulations. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022002 |
[8] |
Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial and Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343 |
[9] |
Yufei Sun, Ee Ling Grace Aw, Bin Li, Kok Lay Teo, Jie Sun. CVaR-based robust models for portfolio selection. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1861-1871. doi: 10.3934/jimo.2019032 |
[10] |
Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177 |
[11] |
Xueting Cui, Xiaoling Sun, Dan Sha. An empirical study on discrete optimization models for portfolio selection. Journal of Industrial and Management Optimization, 2009, 5 (1) : 33-46. doi: 10.3934/jimo.2009.5.33 |
[12] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial and Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[13] |
Zonghan Wang, Moses Olabhele Esangbedo, Sijun Bai. Project portfolio selection based on multi-project synergy. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021177 |
[14] |
Qiyu Wang, Hailin Sun. Sparse markowitz portfolio selection by using stochastic linear complementarity approach. Journal of Industrial and Management Optimization, 2018, 14 (2) : 541-559. doi: 10.3934/jimo.2017059 |
[15] |
Jutamas Kerdkaew, Rabian Wangkeeree. Characterizing robust weak sharp solution sets of convex optimization problems with uncertainty. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2651-2673. doi: 10.3934/jimo.2019074 |
[16] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial and Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[17] |
Alireza Goli, Hasan Khademi Zare, Reza Tavakkoli-Moghaddam, Ahmad Sadeghieh. Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 187-209. doi: 10.3934/naco.2019014 |
[18] |
Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial and Management Optimization, 2019, 15 (2) : 909-932. doi: 10.3934/jimo.2018077 |
[19] |
Lan Yi, Zhongfei Li, Duan Li. Multi-period portfolio selection for asset-liability management with uncertain investment horizon. Journal of Industrial and Management Optimization, 2008, 4 (3) : 535-552. doi: 10.3934/jimo.2008.4.535 |
[20] |
Zhen Wang, Sanyang Liu. Multi-period mean-variance portfolio selection with fixed and proportional transaction costs. Journal of Industrial and Management Optimization, 2013, 9 (3) : 643-657. doi: 10.3934/jimo.2013.9.643 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]