[1]
|
R. Andreani, E. G. Birgin, J. M. Martinez and M. L. Schuverdt, Augmented Lagrangian methods under the constant positive linear dependence constraint qualification, Math. Program., 111 (2008), 5-32.
doi: 10.1007/s10107-006-0077-1.
|
[2]
|
P. Armand and J. Benoist, A local convergence property of primal-dual methods for nonlinear programming, Math. Program., 115 (2008), 199-222.
doi: 10.1007/s10107-007-0136-2.
|
[3]
|
P. Armand, J. C. Gilbert and S. Jan-Jégou, A feasible BFGS interior point algorithm for solving convex minimization problems, SIAM J. Optim., 11 (2000), 199-222.
doi: 10.1137/S1052623498344720.
|
[4]
|
I. Bongartz, A. R. Conn, N. I. M. Gould and P. L. Toint, CUTE: Constrained and Unconstrained Testing Environment, ACM Tran. Math. Software, 21 (1995), 123-160.
|
[5]
|
J. V. Burke, F. E. Curtis and H. Wang, A sequential quadratic optimization algorithm with rapid infeasibility detection, SIAM J. Optim., 24 (2014), 839-872.
doi: 10.1137/120880045.
|
[6]
|
J. V. Burke and S. P. Han, A robust sequential quadratic programming method, Math. Program., 43 (1989), 277-303.
doi: 10.1007/BF01582294.
|
[7]
|
R. H. Byrd, Robust Trust-Region Method for Constrained Optimization, Paper presented at the SIAM Conference on Optimization, Houston, TX, 1987.
|
[8]
|
R. H. Byrd, F. E. Curtis and J. Nocedal, Infeasibility detection and SQP methods for nonlinear optimization, SIAM J. Optim., 20 (2010), 2281-2299.
doi: 10.1137/080738222.
|
[9]
|
R. H. Byrd, J. C. Gilbert and J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Math. Program., 89 (2000), 149-185.
doi: 10.1007/PL00011391.
|
[10]
|
R. H. Byrd, M. E. Hribar and J. Nocedal, An interior point algorithm for large-scale nonlinear programming, SIAM J. Optim., 9 (1999), 877-900.
doi: 10.1137/S1052623497325107.
|
[11]
|
R. H. Byrd, G. Liu and J. Nocedal, On the local behaviour of an interior point method for nonlinear programming, In, Numerical Analysis 1997 (eds. D. F. Griffiths and D. J. Higham), Addison-Wesley Longman, Reading, MA, 380 (1998), 37-56.
|
[12]
|
R. H. Byrd, M. Marazzi and J. Nocedal, On the convergence of Newton iterations to non-stationary points, Math. Program., 99 (2004), 127-148.
doi: 10.1007/s10107-003-0376-8.
|
[13]
|
L. F. Chen and D. Goldfarb, Interior-point $\ell_2$-penalty methods for nonlinear programming with strong global convergence properties, Math. Program., 108 (2006), 1-36.
doi: 10.1007/s10107-005-0701-5.
|
[14]
|
F. E. Curtis, A penalty-interior-point algorithm for nonlinear constrained optimization, Math. Program. Comput., 4 (2012), 181-209.
doi: 10.1007/s12532-012-0041-4.
|
[15]
|
A. S. El-Bakry, R. A. Tapia, T. Tsuchiya and Y. Zhang, On the formulation and theory of the Newton interior-point method for nonlinear programming, J. Optim. Theory Appl., 89 (1996), 507-541.
doi: 10.1007/BF02275347.
|
[16]
|
A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, New York, 1968; republished as Classics in Appl. Math. 4, SIAM, Philadelphia, 1990.
doi: 10.1137/1.9781611971316.
|
[17]
|
R. Fletcher, Practical Methods for Optimization. Vol. 2: Constrained Optimization, John Wiley and Sons, Chichester, 1980.
|
[18]
|
A. Forsgren and P. E. Gill, Primal-dual interior methods for nonconvex nonlinear programming, SIAM J. Optim., 8 (1998), 1132-1152.
doi: 10.1137/S1052623496305560.
|
[19]
|
A. Forsgren, Ph. E. Gill and M. H. Wright, Interior methods for nonlinear optimization, SIAM Review, 44 (2002), 525-597.
doi: 10.1137/S0036144502414942.
|
[20]
|
D. M. Gay, M. L. Overton and M. H. Wright, A primal-dual interior method for nonconvex nonlinear programming, in Advances in Nonlinear Programming, (ed. Y.-X. Yuan), Kluwer Academic Publishers, Dordrecht, 14 (1998), 31-56.
doi: 10.1007/978-1-4613-3335-7_2.
|
[21]
|
E. M. Gertz and Ph. E. Gill, A primal-dual trust region algorithm for nonlinear optimization, Math. Program., 100 (2004), 49-94.
doi: 10.1007/s10107-003-0486-3.
|
[22]
|
N. I. M. Gould, D. Orban and Ph. L. Toint, An interior-point $\ell_1$-penalty method for nonlinear optimization, in Recent Developments in Numerical Analysis and Optimization, Proceedings of NAOIII 2014, Springer, Verlag, 134 (2015), 117-150.
doi: 10.1007/978-3-319-17689-5_6.
|
[23]
|
W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture Notes in Eco. and Math. Systems 187, Springer-Verlag, Berlin, New York, 1981.
doi: 10.1007/BF00934594.
|
[24]
|
X.-W. Liu, G. Perakis and J. Sun, A robust SQP method for mathematical programs with linear complementarity constraints, Comput. Optim. Appl., 34 (2006), 5-33.
doi: 10.1007/s10589-005-3075-y.
|
[25]
|
X.-W. Liu and J. Sun, A robust primal-dual interior point algorithm for nonlinear programs, SIAM J. Optim., 14 (2004), 1163-1186.
doi: 10.1137/S1052623402400641.
|
[26]
|
X.-W. Liu and Y.-X. Yuan, A robust algorithm for optimization with general equality and inequality constraints, SIAM J. Sci. Comput., 22 (2000), 517-534.
doi: 10.1137/S1064827598334861.
|
[27]
|
X.-W. Liu and Y.-X. Yuan, A null-space primal-dual interior-point algorithm for nonlinear optimization with nice convergence properties, Math. Program., 125 (2010), 163-193.
doi: 10.1007/s10107-009-0272-y.
|
[28]
|
J. Nocedal, F. Öztoprak and R. A. Waltz, An interior point method for nonlinear programming with infeasibility detection capabilities, Optim. Methods Softw., 29 (2014), 837-854.
doi: 10.1080/10556788.2013.858156.
|
[29]
|
J. Nocedal and S. Wright, Numerical Optimization, Springer-Verlag New York, Inc., 1999.
doi: 10.1007/b98874.
|
[30]
|
J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York and London, 1970.
|
[31]
|
D. F. Shanno and R. J. Vanderbei, Interior-point methods for nonconvex nonlinear programming: Orderings and higher-order methods, Math. Program., 87 (2000), 303-316.
doi: 10.1007/s101070050116.
|
[32]
|
P. Tseng, Convergent infeasible interior-point trust-region methods for constrained minimization, SIAM J. Optim., 13 (2002), 432-469.
doi: 10.1137/S1052623499357945.
|
[33]
|
M. Ulbrich, S. Ulbrich and L. N. Vicente, A globally convergent primal-dual interior-point filter method for nonlinear programming, Math. Program., 100 (2004), 379-410.
doi: 10.1007/s10107-003-0477-4.
|
[34]
|
A. Wächter and L. T. Biegler, Failure of global convergence for a class of interior point methods for nonlinear programming, Math. Program., 88 (2000), 565-574.
doi: 10.1007/PL00011386.
|
[35]
|
A. Wächter and L. T. Biegler, Line search filter methods for nonlinear programming: Motivation and global convergence, SIAM J. Optim., 16 (2005), 1-31.
doi: 10.1137/S1052623403426556.
|
[36]
|
A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y.
|
[37]
|
M. H. Wright, Why a pure primal Newton barrier step may be infeasible?, SIAM J. Optim., 5 (1995), 1-12.
doi: 10.1137/0805001.
|
[38]
|
S. J. Wright, On the convergence of the Newton/Log-barrier method, Math. Program., 90 (2001), 71-100.
doi: 10.1007/PL00011421.
|
[39]
|
Y.-X. Yuan, On the convergence of a new trust region algorithm, Numer. Math., 70 (1995), 515-539.
doi: 10.1007/s002110050133.
|
[40]
|
Y. Zhang, Solving large-scale linear programs by interior-point methods under the MATLAB environment, Optim. Methods Softw., 10 (1998), 1-31.
doi: 10.1080/10556789808805699.
|