|
M. Bramson
and J. G. Dai
, Heavy traffic limits for some queueing networks, Annals of Applied Probability, 11 (2001)
, 49-90.
doi: 10.1214/aoap/998926987.
|
|
L. Caramellino
, Strassen's law of the iterated logarithm for diffusion processes for small time, Stochastic Processes and their Applications, 74 (1998)
, 1-19.
doi: 10.1016/S0304-4149(97)00100-2.
|
|
H. Chen and A. Mandelbaum, Hierarchical modeling of stochastic network, part Ⅱ: Strong approximations, Stochastic Modeling and Analysis of Manufacturing Systems, Yao, D. D. (Eds), (1994), 107-131.
|
|
H. Chen
and X. Shen
, Strong approximations for multiclass feedforward queueing networks, Annals of Applied Probability, 10 (2000)
, 828-876.
doi: 10.1214/aoap/1019487511.
|
|
H. Chen and D. D. Yao, Fundamentals of Queueing Networks, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-5301-1.
|
|
H. Chen
and H. Q. Zhang
, A sufficient condition and a necessary condition for the diffusion approximations of multiclass queueing networks under priority service disciplines, Queueing Systems, 34 (2000)
, 237-268.
doi: 10.1023/A:1019113204634.
|
|
M. Csörgő ang P. Révész, Strong Approximations in Probability and Statistics, Academic Press, New York, 1981.
|
|
M. Csörgő
, P. Deheuvels
and L. Horváth
, An approximation of stopped sums with applications in queueing theory, Advances in Applied Probability, 19 (1987)
, 674-690.
doi: 10.2307/1427412.
|
|
M. Csörgő
, Z. S. Hu
and H. W. Mei
, Strassen-type law of the iterated logarithm for self-normalized increments of sums, Journal of Mathematical Analysis and Applications, 393 (2012)
, 45-55.
doi: 10.1016/j.jmaa.2012.03.047.
|
|
C. Cuny
, F. Merlevéde
and M. Peligrad
, Law of the iterated logarithm for the periodogram, Stochastic Processes and their Applications, 123 (2013)
, 4065-4089.
doi: 10.1016/j.spa.2013.05.009.
|
|
J. G. Dai
, On the positive Harris recurrence for multiclass queueing networks: a unified approach via fluid limit models, Annals of Applied Probability, 5 (1995)
, 49-77.
doi: 10.1214/aoap/1177004828.
|
|
S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986.
doi: 10.1002/9780470316658.
|
|
P. W. Glynn
and W. Whitt
, A new view of the heavy-traffic limit for infinite-server queues, Advances in Applied Probability, 23 (1991)
, 188-209.
doi: 10.2307/1427517.
|
|
P. W. Glynn
and W. Whitt
, Departures from many queues in series, Annals of Applied Probability, 1 (1991)
, 546-572.
doi: 10.1214/aoap/1177005838.
|
|
P. W. Glynn
and W. Whitt
, A central-limit-theorem version of L=λW, Queueing Systems, 1 (1986)
, 191-215.
doi: 10.1007/BF01536188.
|
|
P. W. Glynn
and W. Whitt
, Sufficient conditions for functional limit theorem versions of L=λW, Queueing Systems, 1 (1987)
, 279-287.
doi: 10.1007/BF01149539.
|
|
P. W. Glynn
and W. Whitt
, An LIL version of L=λW, Mathematics of Operations Research, 13 (1988)
, 693-710.
doi: 10.1287/moor.13.4.693.
|
|
Y. Guo
and Z. Li
, Asymptotic variability analysis for a two-stage tandem queue, part Ⅰ: The functional law of the iterated logarithm, J. Math. Anal. Appl., 450 (2017)
, 1479-1509.
doi: 10.1016/j.jmaa.2017.01.062.
|
|
Y. Guo
and Z. Li
, Asymptotic variability analysis for a two-stage tandem queue, part Ⅱ: The law of the iterated logarithm, J. Math. Anal. Appl., 450 (2017)
, 1510-1534.
doi: 10.1016/j.jmaa.2016.10.054.
|
|
Y. Guo
and Y. Liu
, A law of iterated logarithm for multiclass queues with preemptive priority service discipline, Queueing Systems, 79 (2015)
, 251-291.
doi: 10.1007/s11134-014-9419-5.
|
|
Y. Guo
, Y. Liu
and R. Pei
, Functional law of iterated logarithm for multi-server queues with batch arrivals and customer feedback, Annals of Operations Research, 264 (2018)
, 157-191.
doi: 10.1007/s10479-017-2529-9.
|
|
J. M. Harrison, Brownian Motion and Stochastic Flow System, Wiley, New York, 1985.
|
|
L. Horváth
, Strong approximation of renewal processes, Stochastic Process. Appl., 18 (1984)
, 127-138.
doi: 10.1016/0304-4149(84)90166-2.
|
|
L. Horváth
, Strong approximation of extended renewal processes, The Annals of Probability, 12 (1984)
, 1149-1166.
doi: 10.1214/aop/1176993145.
|
|
L. Horváth
, Strong approximations of open queueing networks, Mathematics of Operations Research, 17 (1992)
, 487-508.
doi: 10.1287/moor.17.2.487.
|
|
G. L. Iglehart
, Multiple channel queues in heavy traffic: IV. Law of the iterated logarithm, Z.Wahrscheinlichkeitstheorie verw. Geb., 17 (1971)
, 168-180.
doi: 10.1007/BF00538869.
|
|
P. Lévy, Théorie de L'addition des Variables Aléatories, Gauthier-Villars, Paris, 1937.
|
|
P. Lévy, Procesus Stochastique et Mouvement Brownien, Gauthier-Villars, Paris, 1948.
|
|
E. Löcherbach
and D. Loukianova
, The law of iterated logarithm for additive functionals and martingale additive functionals of Harris recurrent Markov processes, Stochastic Processes and their Applications, 119 (2009)
, 2312-2335.
doi: 10.1016/j.spa.2008.11.006.
|
|
A. Mandelbaum
and W. A. Massey
, Strong approximations for time-dependent queues, Mathematics of Operations Research, 20 (1995)
, 33-64.
doi: 10.1287/moor.20.1.33.
|
|
A. Mandelbaum
, W. A. Massey
and M. Reiman
, Strong approximations for Markovian service networks, Queueing Systems, 30 (1998)
, 149-201.
doi: 10.1023/A:1019112920622.
|
|
S. Minkevi$\check{c}$ius
and S. Stei$\check{s}\bar{u}$nas
, A law of the iterated logarithm for global values of waiting time in multiphase queues, Statistics and Probability Letters, 61 (2003)
, 359-371.
doi: 10.1016/S0167-7152(02)00393-0.
|
|
S. Minkevi$\check{c}$ius
, On the law of the iterated logarithm in multiserver open queueing networks, Stochastics, 86 (2014)
, 46-59.
doi: 10.1080/17442508.2012.755625.
|
|
S. Minkevi$\check{c}$ius
, V. Dolgopolovas
and L. L. Sakalauskas
, A law of the iterated logarithm for the sojourn time process in queues in series, Methodology and Computing in Applied Probability, 18 (2016)
, 37-57.
doi: 10.1007/s11009-014-9402-y.
|
|
K. Miyabea
and A. Takemura
, The law of the iterated logarithm in game-theoretic probability with quadratic and stronger hedges, Stochastic Processes and their Applications, 123 (2013)
, 3132-3152.
doi: 10.1016/j.spa.2013.03.018.
|
|
W. P. Peterson
, A heavy traffic limit theorem for networks of queues with multiple customer types, Mathematics of Operations Research, 16 (1991)
, 90-118.
doi: 10.1287/moor.16.1.90.
|
|
L. L. Sakalauskas
and S. Minkevi$\check{c}$ius
, On the law of the iterated logarithm in open queueing networks, European Journal of Operational Research, 120 (2000)
, 632-640.
doi: 10.1016/S0377-2217(99)00003-X.
|
|
V. Strassen
, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie Verw. Geb., 3 (1964)
, 211-226.
doi: 10.1007/BF00534910.
|
|
T. H. Tsai
, Empirical law of the iterated logarithm for Markov chains with a countable state space, Stochastic Processes and their Applications, 89 (2000)
, 175-191.
doi: 10.1016/S0304-4149(00)00019-3.
|
|
Y. Wang, The law of the iterated logarithm for p-random sequences. In: Proc. 11th IEEE Conference on Computational Complexity (CCC), (1996), 180-189.
|
|
W. Whitt
, Weak convergence theorems for priority queues: Preemptive-Resume discipline, Journal of Applied Probability, 8 (1971)
, 74-94.
doi: 10.2307/3211839.
|
|
H. Q. Zhang
and G. X. Hsu
, Strong approximations for priority queues: Head-of-the-line-first discipline, Queueing Systems, 10 (1992)
, 213-233.
doi: 10.1007/BF01159207.
|
|
H. Q. Zhang
, G. X. Hsu
and R. X. Wang
, Strong approximations for multiple channels in heavy traffic, Journal of Applied Probability, 27 (1990)
, 658-670.
doi: 10.2307/3214549.
|
|
H. Q. Zhang
, Strong approximations of irreducible closed queueing networks, Advances in Applied Probability, 29 (1997)
, 498-522.
doi: 10.2307/1428014.
|