• Previous Article
    An imperfect sensing-based channel reservation strategy in CRNs and its performance evaluation
  • JIMO Home
  • This Issue
  • Next Article
    Performance analysis and optimization for cognitive radio networks with a finite primary user buffer and a probability returning scheme
May  2020, 16(3): 1135-1148. doi: 10.3934/jimo.2018196

Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority

School of Science, Yanshan University, Qinhuangdao 066004, China

*Corresponding author

Received  October 2017 Revised  April 2018 Published  December 2018

In this paper, we introduce a discrete time Geo/Geo/1 queue system with non-preemptive priority and multiple working vacations. We assume that there are two types of customers in this queue system named "Customers of type-Ⅰ" and "Customers of type-Ⅱ". Customer of type-Ⅱ has a higher priority with non-preemption than Customer of type-Ⅰ. By building a discrete time four-dimensional Markov Chain which includes the numbers of customers with different priorities in the system, the state of the server and the service state, we obtain the state transition probability matrix. Using a birth-and-death chain and matrix-geometric method, we deduce the average queue length, the average waiting time of the two types of customers, and the average busy period of the system. Then, we provide some numerical results to evaluate the effect of the parameters on the system performance. Finally, we develop some benefit functions to analyse both the personal and social benefit, and obtain some optimization results within a certain range.

Citation: Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1135-1148. doi: 10.3934/jimo.2018196
References:
[1]

P. Bocharov, O. Pavlova and D. Puzikova, M/G/1/r retrial queueing systems with priority of primary customers, Mathematical and Computer Modelling, 30 (1999), 89-98. doi: 10.1016/S0895-7177(99)00134-X.  Google Scholar

[2]

Y. DengQ. Wu and Z. Li, Priority queues with threshold switching and setup time, Operations Research Transactions, 4 (2000), 41-53.   Google Scholar

[3]

W. Feng and M. Umemura, Analysis of a finite buffer model with two servers and two nonpreemptive priority classes, European Journal of Operational Research, 192 (2009), 151-172.  doi: 10.1016/j.ejor.2007.09.021.  Google Scholar

[4]

F. Kamoun, Performance analysis of a non-preemptive priority queuing system subjected to a correlated markovian interruption process, Operations Research, 35 (2008), 3969-3988.   Google Scholar

[5]

E. Kao and K. Narayanan, Computing steady-state probabilities of a nonpreemptive priority multiserver queue, ORSA Journal on Computing, 2 (1990), 211-218.   Google Scholar

[6]

T. Katayama and K. Kobayashi, Analysis of a nonpreemptive priority queue with exponential timer and server vacations, Performance Evaluation, 64 (2007), 495-506.   Google Scholar

[7]

O. Kella and U. Yechiali, Waiting times in the non-preemptive priority M/M/c queue, Communications in Statistics. Part C: Stochastic Models, 1 (1985), 257-262. doi: 10.1080/15326348508807014.  Google Scholar

[8]

A. Krishnamoorthy, S. Babu and V. Narayanan, The MAP/(PH/PH)/1 queue with self-generation of priorities and non-preemptive service, European Journal of Operational Research, 195 (2009), 174-185. doi: 10.1016/j.ejor.2008.01.048.  Google Scholar

[9]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM, 1999. doi: 10.1137/1.9780898719734.  Google Scholar

[10]

K. Madan, A non-preemptive priority queueing system with a single server serving two queues M/G/1 and M/D/1 with optional server vacations based on exhaustive service of the priority units, Applied Mathematics, 2 (2011), 791-799. doi: 10.4236/am.2011.26106.  Google Scholar

[11] M. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins Universit Press, Baltimore, MD, 1981.   Google Scholar
[12]

D. Pandey and A. Pal, Delay analysis of a discrete-time non-preemptive priority queue with priority jumps, Applied Mathematics, 9 (2014), 1-12.   Google Scholar

[13]

A. SleptvhenkoJ. SelenI. Adan and G. J. Houtum, Joint queue length distribution of multi-class, single-server queues with preemptive priorities, Queueing Systems, 81 (2015), 379-395.  doi: 10.1007/s11134-015-9460-z.  Google Scholar

[14]

W. Sun, P. Guo, N. Tian and S. Li, Relative priority policies for minimizing the cost of queueing systems with service discrimination, Applied Mathematical Modelling, 33 (2009), 4241-4258. doi: 10.1016/j.apm.2009.03.012.  Google Scholar

[15]

A. M. K. Tarabia, Two-class priority queuing system with restricted number of priority customers, AEU - International Journal of Electronics and Communications, 61 (2007), 534-539.   Google Scholar

[16]

R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.  doi: 10.3934/jimo.2015.11.715.  Google Scholar

[17]

R. Wang and W. Long, Weak convergence theorems for multiserver queueing system in nonpreemptive priority displine, Acta Mathematicae Applicatae Sinica, 17 (1994), 192-200.  Google Scholar

[18]

G. ZhaoY. Chen and X. Xue, M/M/1 queue under nonpreemptive priority, College Mathematics, 22 (2006), 1454-1672.   Google Scholar

show all references

References:
[1]

P. Bocharov, O. Pavlova and D. Puzikova, M/G/1/r retrial queueing systems with priority of primary customers, Mathematical and Computer Modelling, 30 (1999), 89-98. doi: 10.1016/S0895-7177(99)00134-X.  Google Scholar

[2]

Y. DengQ. Wu and Z. Li, Priority queues with threshold switching and setup time, Operations Research Transactions, 4 (2000), 41-53.   Google Scholar

[3]

W. Feng and M. Umemura, Analysis of a finite buffer model with two servers and two nonpreemptive priority classes, European Journal of Operational Research, 192 (2009), 151-172.  doi: 10.1016/j.ejor.2007.09.021.  Google Scholar

[4]

F. Kamoun, Performance analysis of a non-preemptive priority queuing system subjected to a correlated markovian interruption process, Operations Research, 35 (2008), 3969-3988.   Google Scholar

[5]

E. Kao and K. Narayanan, Computing steady-state probabilities of a nonpreemptive priority multiserver queue, ORSA Journal on Computing, 2 (1990), 211-218.   Google Scholar

[6]

T. Katayama and K. Kobayashi, Analysis of a nonpreemptive priority queue with exponential timer and server vacations, Performance Evaluation, 64 (2007), 495-506.   Google Scholar

[7]

O. Kella and U. Yechiali, Waiting times in the non-preemptive priority M/M/c queue, Communications in Statistics. Part C: Stochastic Models, 1 (1985), 257-262. doi: 10.1080/15326348508807014.  Google Scholar

[8]

A. Krishnamoorthy, S. Babu and V. Narayanan, The MAP/(PH/PH)/1 queue with self-generation of priorities and non-preemptive service, European Journal of Operational Research, 195 (2009), 174-185. doi: 10.1016/j.ejor.2008.01.048.  Google Scholar

[9]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM, 1999. doi: 10.1137/1.9780898719734.  Google Scholar

[10]

K. Madan, A non-preemptive priority queueing system with a single server serving two queues M/G/1 and M/D/1 with optional server vacations based on exhaustive service of the priority units, Applied Mathematics, 2 (2011), 791-799. doi: 10.4236/am.2011.26106.  Google Scholar

[11] M. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins Universit Press, Baltimore, MD, 1981.   Google Scholar
[12]

D. Pandey and A. Pal, Delay analysis of a discrete-time non-preemptive priority queue with priority jumps, Applied Mathematics, 9 (2014), 1-12.   Google Scholar

[13]

A. SleptvhenkoJ. SelenI. Adan and G. J. Houtum, Joint queue length distribution of multi-class, single-server queues with preemptive priorities, Queueing Systems, 81 (2015), 379-395.  doi: 10.1007/s11134-015-9460-z.  Google Scholar

[14]

W. Sun, P. Guo, N. Tian and S. Li, Relative priority policies for minimizing the cost of queueing systems with service discrimination, Applied Mathematical Modelling, 33 (2009), 4241-4258. doi: 10.1016/j.apm.2009.03.012.  Google Scholar

[15]

A. M. K. Tarabia, Two-class priority queuing system with restricted number of priority customers, AEU - International Journal of Electronics and Communications, 61 (2007), 534-539.   Google Scholar

[16]

R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.  doi: 10.3934/jimo.2015.11.715.  Google Scholar

[17]

R. Wang and W. Long, Weak convergence theorems for multiserver queueing system in nonpreemptive priority displine, Acta Mathematicae Applicatae Sinica, 17 (1994), 192-200.  Google Scholar

[18]

G. ZhaoY. Chen and X. Xue, M/M/1 queue under nonpreemptive priority, College Mathematics, 22 (2006), 1454-1672.   Google Scholar

Figure 1.  Schematic illustration for the service process of the non-preemptive priority queue
Figure 2.  Schematic diagram for the model description
Figure 3.  Relation of $ E(L_1) $ with $ \lambda $ and $ \alpha $
Figure 4.  Relation of $ E(L_2) $ with $ \lambda $ and $ \alpha $
Figure 5.  Relation of $ E(L) $ with $ \theta $ and $ \mu_1 $
Figure 6.  Relation of $ E(B) $ with $ \mu _1 $ and $ \mu_2 $
Figure 7.  Relation of $ B_1 $ with $ \lambda $ and $ \alpha $
Figure 8.  Relation of $ B_2 $ with $ \lambda $ and $ \alpha $
Figure 9.  Relation of $ D $ with $ \mu _1 $ and $ \alpha $
Figure 10.  Relation of $ D $ with $ \lambda $ and $ \alpha $
Table 1.  Relation of $ E(W_1) $ with $ \mu _1 $ and $ \mu _2 $
$ \mu _2 $ $ \mu _1 =0.30 $ $ \mu _1 =0.32 $ $ \mu _1 =0.34 $ $ \mu _1 =0.36 $ $ \mu _1 =0.38 $ $ \mu _1 =0.40 $
0.45 4.7081 2.9925 2.1313 1.6271 1.3023 1.0787
0.50 2.5403 1.7894 1.3538 1.0748 0.8836 0.7459
0.55 1.7483 1.2914 1.0067 0.8156 0.6800 0.5797
$ \mu _2 $ $ \mu _1 =0.30 $ $ \mu _1 =0.32 $ $ \mu _1 =0.34 $ $ \mu _1 =0.36 $ $ \mu _1 =0.38 $ $ \mu _1 =0.40 $
0.45 4.7081 2.9925 2.1313 1.6271 1.3023 1.0787
0.50 2.5403 1.7894 1.3538 1.0748 0.8836 0.7459
0.55 1.7483 1.2914 1.0067 0.8156 0.6800 0.5797
Table 2.  Relation of $ E(W_2) $ with $ \mu _1 $ and $ \mu _2 $
$ \mu _2 $ $ \mu _1 =0.30 $ $ \mu _1 =0.32 $ $ \mu _1 =0.34 $ $ \mu _1 =0.36 $ $ \mu _1 =0.38 $ $ \mu _1 =0.40 $
0.45 3.6164 2.9022 2.3961 2.0311 1.7626 1.5610
0.50 2.4961 1.9948 1.6473 1.4001 1.2199 1.0853
0.55 1.8492 1.4802 1.2263 1.0464 0.9154 0.8175
$ \mu _2 $ $ \mu _1 =0.30 $ $ \mu _1 =0.32 $ $ \mu _1 =0.34 $ $ \mu _1 =0.36 $ $ \mu _1 =0.38 $ $ \mu _1 =0.40 $
0.45 3.6164 2.9022 2.3961 2.0311 1.7626 1.5610
0.50 2.4961 1.9948 1.6473 1.4001 1.2199 1.0853
0.55 1.8492 1.4802 1.2263 1.0464 0.9154 0.8175
[1]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[2]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[3]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[4]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[5]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[6]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[7]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[8]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[9]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[10]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[11]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[12]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[13]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[14]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[15]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[16]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[17]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[18]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[19]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[20]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (167)
  • HTML views (833)
  • Cited by (0)

Other articles
by authors

[Back to Top]