• Previous Article
    Delayed payment policy in multi-product single-machine economic production quantity model with repair failure and partial backordering
  • JIMO Home
  • This Issue
  • Next Article
    An integrated approach based on Fuzzy Inference System for scheduling and process planning through multiple objectives
May  2020, 16(3): 1261-1272. doi: 10.3934/jimo.2019001

Error bounds of regularized gap functions for nonmonotone Ky Fan inequalities

1. 

School of Mathematics and Finance, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China

* Corresponding author: Minghua Li

Received  November 2016 Revised  November 2018 Published  March 2019

Fund Project: The work was supported in part by the National Natural Science Foundation of China (Grant numbers: 11301418, 11301567, 11571055), the Natural Science Foundation of Chongqing Municipal Science and Technology Commission (Grant numbers: cstc2016jcyjA0141, cstc2016jcyjA0270, cstc2018jcyjAX0226), the Basic Science and Frontier Technology Research of Yongchuan (Grant number: Ycstc, 2018nb1401), the Fundamental Research Funds for the Central Universities (Grant Number: 106112017CDJZRPY0020), the Foundation for High-level Talents of Chongqing University of Art and Sciences (Grant numbers: R2016SC13, P2017SC01), the Chongqing Key Laboratory of Group and Graph Theories and Applications and the Key Laboratory of Complex Data Analysis and Artificial Intelligence of Chongqing Municipal Science and Technology Commission

In this paper, the Clarke generalized Jacobian of the generalized regularized gap function for a nonmonotone Ky Fan inequality is studied. Then, based on the Clarke generalized Jacobian, we derive a global error bound for the nonmonotone Ky Fan inequalities. Finally, an application is given to provide a descent method.

Citation: Minghua Li, Chunrong Chen, Shengjie Li. Error bounds of regularized gap functions for nonmonotone Ky Fan inequalities. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1261-1272. doi: 10.3934/jimo.2019001
References:
[1]

G. Auchmuty, Variational principles for variational inequalities, Numer. Funct. Anal. Optim., 10 (1989), 863-874.  doi: 10.1080/01630568908816335.  Google Scholar

[2]

G. BigiM. Castellani and M. Pappalardo, A new solution method for equilibrium problems, Optim. Methods Softw., 24 (2009), 895-911.  doi: 10.1080/10556780902855620.  Google Scholar

[3]

G. BigiM. CastellaniM. Pappalardo and M. Passacantando, Existence and solution methods for equilibria, European J. Oper. Res., 227 (2013), 1-11.  doi: 10.1016/j.ejor.2012.11.037.  Google Scholar

[4]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145.   Google Scholar

[5]

O. ChadliI. V. Konnov and J. C. Yao, Descent methods for equilibrium problems in a Banach space, Comput. Math. Appl., 48 (2004), 609-616.  doi: 10.1016/j.camwa.2003.05.011.  Google Scholar

[6]

O. Chadli and S. Schaible, Regularized equilibrium problems with application to noncoercive hemivariational inequalities, J. Optim. Theory Appl., 121 (2004), 571-596.  doi: 10.1023/B:JOTA.0000037604.96151.26.  Google Scholar

[7]

O. ChadliZ. H. Liu and J. C. Yao, Applications of equilibrium problems to a class of noncoercive variational inequalities, J. Optim. Theory Appl., 132 (2007), 89-110.  doi: 10.1007/s10957-006-9072-1.  Google Scholar

[8]

C. Charitha, A note on D-gap functions for equilibrium problems, Optimization, 62 (2013), 211-226.  doi: 10.1080/02331934.2011.583987.  Google Scholar

[9]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.  Google Scholar

[10]

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, Berlin Helidelberg, New York, 2003.  Google Scholar

[11]

K. Fan, A minimax inequality and applications: Inequality Ⅲ, Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin, Academic Press, New York, (1972), 103–113.  Google Scholar

[12]

M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math. Program., 53 (1992), 99-110.  doi: 10.1007/BF01585696.  Google Scholar

[13]

F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Nonconvex Optimization and its Applications, 58. Kluwer Academic Publishers, Dordrecht, 2001. doi: 10.1007/0-306-48026-3_12.  Google Scholar

[14]

L. R. Huang and K. F. Ng, Equivalent optimization formulations and error bounds for variational inequality problems, J. Optim. Theory Appl., 125 (2005), 299-314.  doi: 10.1007/s10957-004-1839-7.  Google Scholar

[15]

A. N. Iusem and W. Sosa, New existence results for equilibrium problems, Nonlinear Anal., 52 (2003), 621-635.  doi: 10.1016/S0362-546X(02)00154-2.  Google Scholar

[16]

H. Y. Jiang and L. Q. Qi, Local uniqueness and convergence of iterative methods for nonsmooth variational inequalities, J. Math. Anal. Appl., 196 (1995), 314-331.  doi: 10.1006/jmaa.1995.1412.  Google Scholar

[17]

I. V. Konnov and M. S. S. Ali, Descent methods for monotone equilibrium problems in Banach spaces, J. Comput. Appl. Math., 188 (2006), 165-179.  doi: 10.1016/j.cam.2005.04.004.  Google Scholar

[18]

I. V. Konnov and O. V. Pinyagina, D-gap functions for a class of equilibrium problems in Banach spaces, Comput. Methods Appl. Math., 3 (2003), 274-286.  doi: 10.2478/cmam-2003-0018.  Google Scholar

[19]

I. V. Konnov, Combined relaxation method for monotone equilibrium problems, J. Optim. Theory Appl., 111 (2001), 327-340.  doi: 10.1023/A:1011930301552.  Google Scholar

[20]

Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.  Google Scholar

[21]

G. Li and K. F. Ng, Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems, SIAM J. Optim., 20 (2009), 667-690.  doi: 10.1137/070696283.  Google Scholar

[22]

G. LiC. Tang and Z. Wei, Error bound results for generalized D-gap functions of nonsmooth variational inequality problems, J. Comput. Appl. Math., 233 (2010), 2795-2806.  doi: 10.1016/j.cam.2009.11.025.  Google Scholar

[23]

G. Mastroeni, On auxiliary principle for equilibrium problems, In: Daniele, P., Giannessi, F., Maugeri, A. (eds.): Equilibrium Problems and Variational Models, Kluwer Academic Publishers, Dordrecht, 68(2003), 289-298. doi: 10.1007/978-1-4613-0239-1_15.  Google Scholar

[24]

G. Mastroeni, Gap functions for equilibrium problems, J. Glob. Optim., 27 (2003), 411-426.  doi: 10.1023/A:1026050425030.  Google Scholar

[25]

L. D. Muu and T. D. Quoc, Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model, J. Optim. Theory Appl., 142 (2009), 185-204.  doi: 10.1007/s10957-009-9529-0.  Google Scholar

[26]

M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi-equilibria, Le Matematiche (Catania), 49 (1994), 313-331.   Google Scholar

[27]

M. A. Noor, Auxiliary principle technique for equilibrium problems, J. Optim. Theory Appl., 122 (2004), 371-386.  doi: 10.1023/B:JOTA.0000042526.24671.b2.  Google Scholar

[28]

J. M. Peng, Equivalence of variational inequality problems to unconstrained optimization, Math. Program., 78 (1997), 347-355.  doi: 10.1007/BF02614360.  Google Scholar

[29]

H. Rademacher, Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und Über die Transformation der Doppelintegrale, Math. Ann., 79 (1919), 340-359.  doi: 10.1007/BF01498415.  Google Scholar

[30]

L. C. Zeng and J. C. Yao, Modified combined relaxation method for general monotone equilibrium problems in Hilbert spaces, J. Optim. Theory Appl., 131 (2006), 469-483.  doi: 10.1007/s10957-006-9162-0.  Google Scholar

[31]

L. P. Zhang and J. Y. Han, Unconstrained optimization reformulations of equilibrium problems, Acta Math. Sin. (Engl. Ser.), 25 (2009), 343-354.  doi: 10.1007/s10114-008-7096-1.  Google Scholar

[32]

L. P. Zhang and S. Y. Wu, An algorithm based on the generalized D-gap function for equilibrium problems, J. Comput. Appl. Math., 231 (2009), 403-411.  doi: 10.1016/j.cam.2009.03.006.  Google Scholar

show all references

References:
[1]

G. Auchmuty, Variational principles for variational inequalities, Numer. Funct. Anal. Optim., 10 (1989), 863-874.  doi: 10.1080/01630568908816335.  Google Scholar

[2]

G. BigiM. Castellani and M. Pappalardo, A new solution method for equilibrium problems, Optim. Methods Softw., 24 (2009), 895-911.  doi: 10.1080/10556780902855620.  Google Scholar

[3]

G. BigiM. CastellaniM. Pappalardo and M. Passacantando, Existence and solution methods for equilibria, European J. Oper. Res., 227 (2013), 1-11.  doi: 10.1016/j.ejor.2012.11.037.  Google Scholar

[4]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145.   Google Scholar

[5]

O. ChadliI. V. Konnov and J. C. Yao, Descent methods for equilibrium problems in a Banach space, Comput. Math. Appl., 48 (2004), 609-616.  doi: 10.1016/j.camwa.2003.05.011.  Google Scholar

[6]

O. Chadli and S. Schaible, Regularized equilibrium problems with application to noncoercive hemivariational inequalities, J. Optim. Theory Appl., 121 (2004), 571-596.  doi: 10.1023/B:JOTA.0000037604.96151.26.  Google Scholar

[7]

O. ChadliZ. H. Liu and J. C. Yao, Applications of equilibrium problems to a class of noncoercive variational inequalities, J. Optim. Theory Appl., 132 (2007), 89-110.  doi: 10.1007/s10957-006-9072-1.  Google Scholar

[8]

C. Charitha, A note on D-gap functions for equilibrium problems, Optimization, 62 (2013), 211-226.  doi: 10.1080/02331934.2011.583987.  Google Scholar

[9]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.  Google Scholar

[10]

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, Berlin Helidelberg, New York, 2003.  Google Scholar

[11]

K. Fan, A minimax inequality and applications: Inequality Ⅲ, Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin, Academic Press, New York, (1972), 103–113.  Google Scholar

[12]

M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math. Program., 53 (1992), 99-110.  doi: 10.1007/BF01585696.  Google Scholar

[13]

F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Nonconvex Optimization and its Applications, 58. Kluwer Academic Publishers, Dordrecht, 2001. doi: 10.1007/0-306-48026-3_12.  Google Scholar

[14]

L. R. Huang and K. F. Ng, Equivalent optimization formulations and error bounds for variational inequality problems, J. Optim. Theory Appl., 125 (2005), 299-314.  doi: 10.1007/s10957-004-1839-7.  Google Scholar

[15]

A. N. Iusem and W. Sosa, New existence results for equilibrium problems, Nonlinear Anal., 52 (2003), 621-635.  doi: 10.1016/S0362-546X(02)00154-2.  Google Scholar

[16]

H. Y. Jiang and L. Q. Qi, Local uniqueness and convergence of iterative methods for nonsmooth variational inequalities, J. Math. Anal. Appl., 196 (1995), 314-331.  doi: 10.1006/jmaa.1995.1412.  Google Scholar

[17]

I. V. Konnov and M. S. S. Ali, Descent methods for monotone equilibrium problems in Banach spaces, J. Comput. Appl. Math., 188 (2006), 165-179.  doi: 10.1016/j.cam.2005.04.004.  Google Scholar

[18]

I. V. Konnov and O. V. Pinyagina, D-gap functions for a class of equilibrium problems in Banach spaces, Comput. Methods Appl. Math., 3 (2003), 274-286.  doi: 10.2478/cmam-2003-0018.  Google Scholar

[19]

I. V. Konnov, Combined relaxation method for monotone equilibrium problems, J. Optim. Theory Appl., 111 (2001), 327-340.  doi: 10.1023/A:1011930301552.  Google Scholar

[20]

Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.  Google Scholar

[21]

G. Li and K. F. Ng, Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems, SIAM J. Optim., 20 (2009), 667-690.  doi: 10.1137/070696283.  Google Scholar

[22]

G. LiC. Tang and Z. Wei, Error bound results for generalized D-gap functions of nonsmooth variational inequality problems, J. Comput. Appl. Math., 233 (2010), 2795-2806.  doi: 10.1016/j.cam.2009.11.025.  Google Scholar

[23]

G. Mastroeni, On auxiliary principle for equilibrium problems, In: Daniele, P., Giannessi, F., Maugeri, A. (eds.): Equilibrium Problems and Variational Models, Kluwer Academic Publishers, Dordrecht, 68(2003), 289-298. doi: 10.1007/978-1-4613-0239-1_15.  Google Scholar

[24]

G. Mastroeni, Gap functions for equilibrium problems, J. Glob. Optim., 27 (2003), 411-426.  doi: 10.1023/A:1026050425030.  Google Scholar

[25]

L. D. Muu and T. D. Quoc, Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model, J. Optim. Theory Appl., 142 (2009), 185-204.  doi: 10.1007/s10957-009-9529-0.  Google Scholar

[26]

M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi-equilibria, Le Matematiche (Catania), 49 (1994), 313-331.   Google Scholar

[27]

M. A. Noor, Auxiliary principle technique for equilibrium problems, J. Optim. Theory Appl., 122 (2004), 371-386.  doi: 10.1023/B:JOTA.0000042526.24671.b2.  Google Scholar

[28]

J. M. Peng, Equivalence of variational inequality problems to unconstrained optimization, Math. Program., 78 (1997), 347-355.  doi: 10.1007/BF02614360.  Google Scholar

[29]

H. Rademacher, Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und Über die Transformation der Doppelintegrale, Math. Ann., 79 (1919), 340-359.  doi: 10.1007/BF01498415.  Google Scholar

[30]

L. C. Zeng and J. C. Yao, Modified combined relaxation method for general monotone equilibrium problems in Hilbert spaces, J. Optim. Theory Appl., 131 (2006), 469-483.  doi: 10.1007/s10957-006-9162-0.  Google Scholar

[31]

L. P. Zhang and J. Y. Han, Unconstrained optimization reformulations of equilibrium problems, Acta Math. Sin. (Engl. Ser.), 25 (2009), 343-354.  doi: 10.1007/s10114-008-7096-1.  Google Scholar

[32]

L. P. Zhang and S. Y. Wu, An algorithm based on the generalized D-gap function for equilibrium problems, J. Comput. Appl. Math., 231 (2009), 403-411.  doi: 10.1016/j.cam.2009.03.006.  Google Scholar

[1]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[2]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[3]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[4]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[5]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[6]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[7]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[8]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[9]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[10]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[11]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[12]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[13]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[14]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[15]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (158)
  • HTML views (722)
  • Cited by (0)

Other articles
by authors

[Back to Top]