
-
Previous Article
Multidimensional balanced credibility model with time effect and two level random common effects
- JIMO Home
- This Issue
-
Next Article
Delayed payment policy in multi-product single-machine economic production quantity model with repair failure and partial backordering
Multicriteria investment problem with Savage's risk criteria: Theoretical aspects of stability and case study
1. | Economics and Management School, University of Chinese Academy of Sciences, 100190 Beijing, China |
2. | Faculty of Mechanics and Mathematics, Belarusian State University, 220030 Minsk, Belarus |
3. | Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland |
A discrete variant of a multicriteria investment portfolio optimization problem with Savage's risk criteria is considered. One of the three problem parameter spaces is endowed with Hölder's norm, and the other two are endowed with Chebyshev's norm. The lower and upper attainable bounds on the stability radius of one Pareto optimal portfolio are obtained. We illustrate the application of our theoretical results by modeling a relevant case study.
References:
[1] |
F. Al-Maliky, M. Hifi and H. Mhalla,
Sensitivity analysis of the setup knapsack problem to perturbation of arbitrary profits or weights, International Transactions in Operational Research, 25 (2018), 637-666.
doi: 10.1111/itor.12373. |
[2] |
M. N. M. Arratia, I. F. Lépez, S. E. Schaeffer and L. Cruz-Reyes, Static R & D project portfolio selection in public organizations, Decision Support Systems, 84 (2016), 53-63. Google Scholar |
[3] |
T. Belgacem and M. Hifi,
Sensitivity analysis of the optimum to perturbation of the profit of a subset of items in the binary knapsack problem, Discrete Optimization, 5 (2008), 755-761.
doi: 10.1016/j.disopt.2008.05.001. |
[4] |
W. C. Benton, A profitability evaluation of America's best hospitals, 2000-2008, Decision Sciences, 44 (2013), 1139-1153. Google Scholar |
[5] |
L. Berger, J. Emmerling and M. Tavoni, Managing catastrophic climate risks under model uncertainty aversion, Management Science, 63 (2016), 749-765. Google Scholar |
[6] |
E. Bronshtein, M. Kachkaeva and E. Tulupova,
Control of investment portfolio based on complex quantile risk measures, J. of Comput. and Syst. Sci. Int., 50 (2011), 174-180.
doi: 10.1134/S1064230711010084. |
[7] |
N. Chakravarti and A. Wagelmans,
Calculation of stability radii for combinatorial optimization problem, Oper. Res. Lett., 23 (1998), 1-7.
doi: 10.1016/S0167-6377(98)00031-5. |
[8] |
M. Crouhy, D. Galai and R. Mark, The Essentials of Risk Management, New Yourk: McGraw-Hill; 2005. Google Scholar |
[9] |
H. Dincers, U. Hacioglu, E. Tatoglu and D. Delen, A fuzzy-hybrid analytic model to assess investors' perceptions for industry selection, Decision Support Systems, 86 (2016), 24-34. Google Scholar |
[10] |
D. Du and P. Pardalos (eds.), Minimax and applications, Dordrecht: Kluwer; 1995.
doi: 10.1007/978-1-4613-3557-3. |
[11] |
V. Emelichev and D. Podkopaev,
Quantitative stability analysis for vector problems of 0-1 programming, Discret. Optim., 7 (2010), 48-63.
doi: 10.1016/j.disopt.2010.02.001. |
[12] |
V. Emelichev and K. Kuzmin,
Stability criteria in vector combinatorial bottleneck problems in terms of binary relations, Cybernetics and Syst. Analys., 44 (2008), 397-404.
doi: 10.1007/s10559-008-9001-4. |
[13] |
V. Emelichev and O. Karelkina,
Postoptimal analysis of the multicriteria combinatorial median location problem, Optim., 61 (2012), 1151-1167.
doi: 10.1080/02331934.2010.542813. |
[14] |
V. Emelichev, V. Korotkov and Yu. Nikulin, Post-optimal analysis for Markowitz's multicriteria portfolio optimization problem, J. Multi-Crit. Decis. Analys., 21 (2014), 95-100. Google Scholar |
[15] |
V. Emelichev, V. Korotkov and K. Kuzmin,
Multicriterial investment problem in conditions of uncertainty and risk, J. of Comput. and Syst. Sci. Int., 50 (2011), 1011-1018.
doi: 10.1134/S1064230711040071. |
[16] |
V. Emelichev, V. Korotkov and K. Kuzmin,
On stability of a Pareto-optimal solution of a portfolio optimization problem with Savage's minimax risk criteria, Bull. of the Acad. of Sci. of Moldova. Math., 3 (2010), 35-44.
|
[17] |
V. Emelichev and V. Korotkov,
Stability radius of a vector investment problem with Savage's minimax risk criteria, Cybernetics and Syst. Analys., 48 (2012), 378-386.
doi: 10.1007/s10559-012-9417-8. |
[18] |
V. Emelichev and K. Kuzmin,
A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem, Discret. Math. Appl., 17 (2007), 349-354.
doi: 10.1515/dma.2007.029. |
[19] |
V. Emelichev, K. Kuzmin and Y. Nikulin,
Stability analysis of the Pareto optimal solution for some vector Boolean optimization problem, Optim., 54 (2005), 545-561.
doi: 10.1080/02331930500342708. |
[20] |
J. Frank, C. F. A. Fabozzi and H. Markowitz (editors), The Theory and Practice of Investment Management: Asset Allocation, Valuation, Portfolio Construction, and Strategies. Wiley; 2011. Google Scholar |
[21] |
E. Fernandez, C. Gomez, G. Rivera and L. Cruz-Reyes,
Hybrid metaheuristic approach for handling many objectives and decisions on partial support in project portfolio optimisation, Information Sciences, 315 (2015), 102-122.
doi: 10.1016/j.ins.2015.03.064. |
[22] |
B. Gorissen, İ. Yanıkoğlu and D. den Hertog, A practical guide to robust optimization, Omega, 53 (2015), 124-137. Google Scholar |
[23] |
E. Gurevsky, O. Battaïa and A. Dolgui,
Stability measure for a generalized assembly line balancing problem, Discrete Applied Mathematics, 161 (2013), 377-394.
doi: 10.1016/j.dam.2012.08.037. |
[24] |
M. Hirschberger, R. E. Steuer, S. Utz, M. Wimmer and Y. Qi,
Computing the nondominated surface in tri-criterion portfolio selection, Operations Research, 61 (2013), 169-183.
doi: 10.1287/opre.1120.1140. |
[25] |
X. Huang and T. Zhao, Project selection and adjustment based on uncertain measure, Information Sciences, 352/353 (2016), 1-14. Google Scholar |
[26] |
K. Khalili-Damghani and M. Tavana, A comprehensive framework for sustainable project portfolio selection based on structural equation modeling, Project Management Journal, 45 (2014), 83-97. Google Scholar |
[27] |
K. Khalili-Damghani, S. Sadi-Nezhad, F. H. Lotfi and M. Tavana, A hybrid fuzzy rule-based multi-criteria framework for sustainable project portfolio selection, Information Sciences, 220 (2013), 442-462. Google Scholar |
[28] |
M. Koudstaal, R. Sloof and M. van Praag, Risk, uncertainty, and entrepreneurship: Evidence from a lab-in-the-field experiment, Management Science, 62 (2015), 2897-2915. Google Scholar |
[29] |
L. Kozeratska, J. Forbes, R. Goebel and J. Kresta,
Perturbed cones for analysis of uncertain multi-criteria optimization problems, Linear Algebra and its Appl., 378 (2004), 203-229.
doi: 10.1016/j.laa.2003.09.013. |
[30] |
T. Lebedeva and T. Sergienko,
Different types of stability of vector integer optimization problem: general approach, Cybernetics and Syst. Analys., 44 (2008), 429-433.
doi: 10.1007/s10559-008-9017-9. |
[31] |
T. Lebedeva, N. Semenona and T. Sergienko,
Stability of vector problems of integer optimization: relationship with the stability of sets of optimal and nonoptimal solutions, Cybernetics and Syst. Analys., 41 (2005), 551-558.
doi: 10.1007/s10559-005-0090-z. |
[32] |
M. Libura, E.S. van der Poort, G. Sierksma and J. A. A. van der Veen,
Stability aspects of the traveling salesman problem based on k-best solutions, Discrete Applied Mathematics, 87 (1998), 159-185.
doi: 10.1016/S0166-218X(98)00055-9. |
[33] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, New York: Willey; 1991. Google Scholar |
[34] |
G. Mavrotas, J. R. Figueira and E. Siskos, Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection, Omega, 52 (2015), 142-155. Google Scholar |
[35] |
K. Miettinen, Nonlinear Multiobjective Optimization, Boston: Kluwer; 1999. |
[36] |
A. Mishra, S. R. Das and J. J. Murray, Risk, process maturity, and project performance: An empirical analysis of US federal government technology projects, Production and Operations Management, 25 (2016), 210-232. Google Scholar |
[37] |
M. Note, Project Management for Information Professionals, Waltham-Kidlington: Chandos; 2016. Google Scholar |
[38] |
D. L. Olson and D. D. Wu, Enterprise Risk Management Models, Berlin-Heidelberg: Springer-Verlag; 2017. Google Scholar |
[39] |
A. Özkış and A. Babalık, A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm, Information Sciences, 402 (2017), 124-148. Google Scholar |
[40] |
D. Power, R. Klassen, T. J. Kull and D. Simpson, Competitive goals and plant investment in environment and safety practices: Moderating effect of national culture, Decision Sciences, 46 (2015), 63-100. Google Scholar |
[41] |
R. Ramaswamy, J. B. Orlin and N. Chakravarti,
Sensitivity analysis for shortest path problems and maximum capacity path problems in undirected graphs, Mathematical Programming, 102 (2005), 355-369.
doi: 10.1007/s10107-004-0517-8. |
[42] |
L. Savage, The Foundations of Statistics, New York: Dover; 1972. |
[43] |
J. A. Sefaira, C. Y. Mándezb, O. Babatc, A. L. Medagliab and L. F. Zuluaga, Linear solution schemes for mean-semivariance project portfolio selection problems: An application in the oil and gas industry, Omega, 68 (2017), 39-48. Google Scholar |
[44] |
P. Sironi, Modern Portfolio Management: From Markowitz to Probabilistic Scenario Optimisation, Risk books. 2015. Google Scholar |
[45] |
P. Soberanis, Risk Optimization with P-Order Conic Constraints, Ph.d. thesis University of Iowa, 2009. |
[46] |
Y. Sotskov, N. Sotskova, T. Lai and F. Werner, Scheduling Under Uncertainty. Theory and Algorithms, Belorusskaya nauka, Minsk, 2010. Google Scholar |
[47] |
Y. Sotskov and T. Lai,
Minimizing total weighted flow under uncertainty using dominance and a stability box, Computers & Operations Res., 39 (2012), 1271-1289.
doi: 10.1016/j.cor.2011.02.001. |
[48] |
Y. Sotskov and F. Werner, A stability approach in sequencing and scheduling, Chapter in the book sequencing and Scheduling with Inaccurate Data? Y. Sotskov, F. Werner (Editors). Nova Science Publishers, Inc., New York, USA, (2014), 283-344. Google Scholar |
[49] |
S. Van Hoesel and A. Wagelmans,
On the complexity of postoptimality analysis of 0-1 programs, Discret. Appl. Math., 91 (1999), 251-263.
doi: 10.1016/S0166-218X(98)00151-6. |
[50] |
C. Von Lücken, B. Barán and C. Brizuela,
A survey on multi-objective evolutionary algorithms for many-objective problems, Computational Optimization and Applications, 58 (2014), 707-756.
doi: 10.1007/s10589-014-9644-1. |
[51] |
P. Yu, Multiple-criteria Decision Making: Concepts, Techniques, and Extensions, New York: Plenum Press; 1985.
doi: 10.1007/978-1-4684-8395-6. |
show all references
References:
[1] |
F. Al-Maliky, M. Hifi and H. Mhalla,
Sensitivity analysis of the setup knapsack problem to perturbation of arbitrary profits or weights, International Transactions in Operational Research, 25 (2018), 637-666.
doi: 10.1111/itor.12373. |
[2] |
M. N. M. Arratia, I. F. Lépez, S. E. Schaeffer and L. Cruz-Reyes, Static R & D project portfolio selection in public organizations, Decision Support Systems, 84 (2016), 53-63. Google Scholar |
[3] |
T. Belgacem and M. Hifi,
Sensitivity analysis of the optimum to perturbation of the profit of a subset of items in the binary knapsack problem, Discrete Optimization, 5 (2008), 755-761.
doi: 10.1016/j.disopt.2008.05.001. |
[4] |
W. C. Benton, A profitability evaluation of America's best hospitals, 2000-2008, Decision Sciences, 44 (2013), 1139-1153. Google Scholar |
[5] |
L. Berger, J. Emmerling and M. Tavoni, Managing catastrophic climate risks under model uncertainty aversion, Management Science, 63 (2016), 749-765. Google Scholar |
[6] |
E. Bronshtein, M. Kachkaeva and E. Tulupova,
Control of investment portfolio based on complex quantile risk measures, J. of Comput. and Syst. Sci. Int., 50 (2011), 174-180.
doi: 10.1134/S1064230711010084. |
[7] |
N. Chakravarti and A. Wagelmans,
Calculation of stability radii for combinatorial optimization problem, Oper. Res. Lett., 23 (1998), 1-7.
doi: 10.1016/S0167-6377(98)00031-5. |
[8] |
M. Crouhy, D. Galai and R. Mark, The Essentials of Risk Management, New Yourk: McGraw-Hill; 2005. Google Scholar |
[9] |
H. Dincers, U. Hacioglu, E. Tatoglu and D. Delen, A fuzzy-hybrid analytic model to assess investors' perceptions for industry selection, Decision Support Systems, 86 (2016), 24-34. Google Scholar |
[10] |
D. Du and P. Pardalos (eds.), Minimax and applications, Dordrecht: Kluwer; 1995.
doi: 10.1007/978-1-4613-3557-3. |
[11] |
V. Emelichev and D. Podkopaev,
Quantitative stability analysis for vector problems of 0-1 programming, Discret. Optim., 7 (2010), 48-63.
doi: 10.1016/j.disopt.2010.02.001. |
[12] |
V. Emelichev and K. Kuzmin,
Stability criteria in vector combinatorial bottleneck problems in terms of binary relations, Cybernetics and Syst. Analys., 44 (2008), 397-404.
doi: 10.1007/s10559-008-9001-4. |
[13] |
V. Emelichev and O. Karelkina,
Postoptimal analysis of the multicriteria combinatorial median location problem, Optim., 61 (2012), 1151-1167.
doi: 10.1080/02331934.2010.542813. |
[14] |
V. Emelichev, V. Korotkov and Yu. Nikulin, Post-optimal analysis for Markowitz's multicriteria portfolio optimization problem, J. Multi-Crit. Decis. Analys., 21 (2014), 95-100. Google Scholar |
[15] |
V. Emelichev, V. Korotkov and K. Kuzmin,
Multicriterial investment problem in conditions of uncertainty and risk, J. of Comput. and Syst. Sci. Int., 50 (2011), 1011-1018.
doi: 10.1134/S1064230711040071. |
[16] |
V. Emelichev, V. Korotkov and K. Kuzmin,
On stability of a Pareto-optimal solution of a portfolio optimization problem with Savage's minimax risk criteria, Bull. of the Acad. of Sci. of Moldova. Math., 3 (2010), 35-44.
|
[17] |
V. Emelichev and V. Korotkov,
Stability radius of a vector investment problem with Savage's minimax risk criteria, Cybernetics and Syst. Analys., 48 (2012), 378-386.
doi: 10.1007/s10559-012-9417-8. |
[18] |
V. Emelichev and K. Kuzmin,
A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem, Discret. Math. Appl., 17 (2007), 349-354.
doi: 10.1515/dma.2007.029. |
[19] |
V. Emelichev, K. Kuzmin and Y. Nikulin,
Stability analysis of the Pareto optimal solution for some vector Boolean optimization problem, Optim., 54 (2005), 545-561.
doi: 10.1080/02331930500342708. |
[20] |
J. Frank, C. F. A. Fabozzi and H. Markowitz (editors), The Theory and Practice of Investment Management: Asset Allocation, Valuation, Portfolio Construction, and Strategies. Wiley; 2011. Google Scholar |
[21] |
E. Fernandez, C. Gomez, G. Rivera and L. Cruz-Reyes,
Hybrid metaheuristic approach for handling many objectives and decisions on partial support in project portfolio optimisation, Information Sciences, 315 (2015), 102-122.
doi: 10.1016/j.ins.2015.03.064. |
[22] |
B. Gorissen, İ. Yanıkoğlu and D. den Hertog, A practical guide to robust optimization, Omega, 53 (2015), 124-137. Google Scholar |
[23] |
E. Gurevsky, O. Battaïa and A. Dolgui,
Stability measure for a generalized assembly line balancing problem, Discrete Applied Mathematics, 161 (2013), 377-394.
doi: 10.1016/j.dam.2012.08.037. |
[24] |
M. Hirschberger, R. E. Steuer, S. Utz, M. Wimmer and Y. Qi,
Computing the nondominated surface in tri-criterion portfolio selection, Operations Research, 61 (2013), 169-183.
doi: 10.1287/opre.1120.1140. |
[25] |
X. Huang and T. Zhao, Project selection and adjustment based on uncertain measure, Information Sciences, 352/353 (2016), 1-14. Google Scholar |
[26] |
K. Khalili-Damghani and M. Tavana, A comprehensive framework for sustainable project portfolio selection based on structural equation modeling, Project Management Journal, 45 (2014), 83-97. Google Scholar |
[27] |
K. Khalili-Damghani, S. Sadi-Nezhad, F. H. Lotfi and M. Tavana, A hybrid fuzzy rule-based multi-criteria framework for sustainable project portfolio selection, Information Sciences, 220 (2013), 442-462. Google Scholar |
[28] |
M. Koudstaal, R. Sloof and M. van Praag, Risk, uncertainty, and entrepreneurship: Evidence from a lab-in-the-field experiment, Management Science, 62 (2015), 2897-2915. Google Scholar |
[29] |
L. Kozeratska, J. Forbes, R. Goebel and J. Kresta,
Perturbed cones for analysis of uncertain multi-criteria optimization problems, Linear Algebra and its Appl., 378 (2004), 203-229.
doi: 10.1016/j.laa.2003.09.013. |
[30] |
T. Lebedeva and T. Sergienko,
Different types of stability of vector integer optimization problem: general approach, Cybernetics and Syst. Analys., 44 (2008), 429-433.
doi: 10.1007/s10559-008-9017-9. |
[31] |
T. Lebedeva, N. Semenona and T. Sergienko,
Stability of vector problems of integer optimization: relationship with the stability of sets of optimal and nonoptimal solutions, Cybernetics and Syst. Analys., 41 (2005), 551-558.
doi: 10.1007/s10559-005-0090-z. |
[32] |
M. Libura, E.S. van der Poort, G. Sierksma and J. A. A. van der Veen,
Stability aspects of the traveling salesman problem based on k-best solutions, Discrete Applied Mathematics, 87 (1998), 159-185.
doi: 10.1016/S0166-218X(98)00055-9. |
[33] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, New York: Willey; 1991. Google Scholar |
[34] |
G. Mavrotas, J. R. Figueira and E. Siskos, Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection, Omega, 52 (2015), 142-155. Google Scholar |
[35] |
K. Miettinen, Nonlinear Multiobjective Optimization, Boston: Kluwer; 1999. |
[36] |
A. Mishra, S. R. Das and J. J. Murray, Risk, process maturity, and project performance: An empirical analysis of US federal government technology projects, Production and Operations Management, 25 (2016), 210-232. Google Scholar |
[37] |
M. Note, Project Management for Information Professionals, Waltham-Kidlington: Chandos; 2016. Google Scholar |
[38] |
D. L. Olson and D. D. Wu, Enterprise Risk Management Models, Berlin-Heidelberg: Springer-Verlag; 2017. Google Scholar |
[39] |
A. Özkış and A. Babalık, A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm, Information Sciences, 402 (2017), 124-148. Google Scholar |
[40] |
D. Power, R. Klassen, T. J. Kull and D. Simpson, Competitive goals and plant investment in environment and safety practices: Moderating effect of national culture, Decision Sciences, 46 (2015), 63-100. Google Scholar |
[41] |
R. Ramaswamy, J. B. Orlin and N. Chakravarti,
Sensitivity analysis for shortest path problems and maximum capacity path problems in undirected graphs, Mathematical Programming, 102 (2005), 355-369.
doi: 10.1007/s10107-004-0517-8. |
[42] |
L. Savage, The Foundations of Statistics, New York: Dover; 1972. |
[43] |
J. A. Sefaira, C. Y. Mándezb, O. Babatc, A. L. Medagliab and L. F. Zuluaga, Linear solution schemes for mean-semivariance project portfolio selection problems: An application in the oil and gas industry, Omega, 68 (2017), 39-48. Google Scholar |
[44] |
P. Sironi, Modern Portfolio Management: From Markowitz to Probabilistic Scenario Optimisation, Risk books. 2015. Google Scholar |
[45] |
P. Soberanis, Risk Optimization with P-Order Conic Constraints, Ph.d. thesis University of Iowa, 2009. |
[46] |
Y. Sotskov, N. Sotskova, T. Lai and F. Werner, Scheduling Under Uncertainty. Theory and Algorithms, Belorusskaya nauka, Minsk, 2010. Google Scholar |
[47] |
Y. Sotskov and T. Lai,
Minimizing total weighted flow under uncertainty using dominance and a stability box, Computers & Operations Res., 39 (2012), 1271-1289.
doi: 10.1016/j.cor.2011.02.001. |
[48] |
Y. Sotskov and F. Werner, A stability approach in sequencing and scheduling, Chapter in the book sequencing and Scheduling with Inaccurate Data? Y. Sotskov, F. Werner (Editors). Nova Science Publishers, Inc., New York, USA, (2014), 283-344. Google Scholar |
[49] |
S. Van Hoesel and A. Wagelmans,
On the complexity of postoptimality analysis of 0-1 programs, Discret. Appl. Math., 91 (1999), 251-263.
doi: 10.1016/S0166-218X(98)00151-6. |
[50] |
C. Von Lücken, B. Barán and C. Brizuela,
A survey on multi-objective evolutionary algorithms for many-objective problems, Computational Optimization and Applications, 58 (2014), 707-756.
doi: 10.1007/s10589-014-9644-1. |
[51] |
P. Yu, Multiple-criteria Decision Making: Concepts, Techniques, and Extensions, New York: Plenum Press; 1985.
doi: 10.1007/978-1-4684-8395-6. |






a | b | c | d | e | f | g | h | |
CSME | 81 | 63 | 110 | 102 | 79 | 161 | 168 | 61 |
EAEU | 120 | 68 | 155 | 92 | 137 | 149 | 231 | 90 |
MERCOSUR | 144 | 50 | 186 | 100 | 124 | 152 | 146 | 119 |
GCC | 125 | 58 | 182 | 192 | 125 | 136 | 254 | 116 |
SICA | 58 | 66 | 171 | 94 | 126 | 139 | 323 | 106 |
a | b | c | d | e | f | g | h | |
CSME | 81 | 63 | 110 | 102 | 79 | 161 | 168 | 61 |
EAEU | 120 | 68 | 155 | 92 | 137 | 149 | 231 | 90 |
MERCOSUR | 144 | 50 | 186 | 100 | 124 | 152 | 146 | 119 |
GCC | 125 | 58 | 182 | 192 | 125 | 136 | 254 | 116 |
SICA | 58 | 66 | 171 | 94 | 126 | 139 | 323 | 106 |
[1] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[2] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[3] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[6] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[7] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[8] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[9] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[10] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[11] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[12] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[13] |
Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]