[1]
|
S. A. Abdel Sabour and R. Poulin, Valuing real capital investments using the least-squares Monte Carlo method, The Engineering Economist, 51 (2006), 141-160.
|
[2]
|
M. Amram and N. Kulatilaka, Disciplined decisions: Aligning strategy with the financial markets, Harvard Business Review, 77 (1999), 95-104.
|
[3]
|
M. Andalaft-Chacur, M. Montaz Ali and J. Jorge Gonzalez Salazar, Real options pricing by the finite element method, Computers and Mathematics with Applications, 61 (2011), 2863-2873.
doi: 10.1016/j.camwa.2011.03.070.
|
[4]
|
L. Angermann and S. Wang, Convergence of a fitted finite volume method for the penalized Black-Scholes equation governing European and American Option pricing, Numer. Math., 106 (2007), 1-40.
doi: 10.1007/s00211-006-0057-7.
|
[5]
|
J. Ankudinova and M. Ehrhardt, On the numerical solution of nonlinear Black-Scholes equations, Computers and Mathematics with Applications, 56 (2008), 799-812.
doi: 10.1016/j.camwa.2008.02.005.
|
[6]
|
A. Bensoussan and J. L. Lions, Applications of Variational Inequalities in Stochastic Control, Studies in Mathematics and its Applications, 12. North-Holland Publishing Co., Amsterdam-New York, 1982.
|
[7]
|
F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.
doi: 10.1086/260062.
|
[8]
|
R. A. Brualdi and S. Mellendorf, Regions in the complex plane containing the eigenvalues of a matrix, Amer. Math. Monthly, 101 (1994), 975-985.
doi: 10.1080/00029890.1994.12004577.
|
[9]
|
M. J. Brennan and E. S. Schwartz, Finite difference methods and jump processes arising in the pricing of contingent claims, Journal of Financial and Quantitative Analysis, 13 (1978), 461-474.
doi: 10.2307/2330152.
|
[10]
|
M. J. Brennan and E. S. Schwartz, Evaluating natural resource investments, The Journal of Business, 58 (1985), 135-157.
doi: 10.1086/296288.
|
[11]
|
W. Chen and S. Wang, A penalty method for a fractional order parabolic variational inequality governing American put option valuation, Computers & Mathematics with Applications, 67 (2014), 77-90.
doi: 10.1016/j.camwa.2013.10.007.
|
[12]
|
C. H. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Computational Optimization and Application, 5 (1996), 97-138.
doi: 10.1007/BF00249052.
|
[13]
|
G. Cortazar, E. S. Schwartz and J. Casassus, Optimal exploration investments under price
and geological-technical uncertainty: A real options model, R and D Management, 31 (2001),
181–189.
|
[14]
|
G. Courtadon, A more accurate finite difference approximation for the valuation of options, J. Financial Economics Quant. Anal., 17 (1982), 697-703.
doi: 10.2307/2330857.
|
[15]
|
A. N. Daryina, A. F. Izmailov and M. V. Solodov, A class of active-set Newton methods for mixed complementarity problems, SIAM Journal on Optimization, 15 (2004), 409-429.
doi: 10.1137/S105262340343590X.
|
[16]
|
A. K. Dixit and R. S. Pindyck, Investment Under Uncertainty, Princeton University Press, Princeton, N.J., 1994.
|
[17]
|
D. J. Duffy, Finite Difference Methods in Financial Engineering – A Partial Differential Equation Approach, John Wiley & Sons Ltd, 2006.
doi: 10.1002/9781118673447.
|
[18]
|
F. Facchinei and J. S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems, Vol. I, Springer Series in Operations Research, Springer-Verlag, New York, 2003.
|
[19]
|
M. C. Ferris and J. S. Pang, Engineering and economic applications of complementarity problems, SIAM Rev., 39 (1997), 669-713.
doi: 10.1137/S0036144595285963.
|
[20]
|
A. Forsgren, P. E. Gill and M. H. Wright, Interior methods for nonlinear optimization, SIAM Rev., 44 (2002), 525-597.
doi: 10.1137/S0036144502414942.
|
[21]
|
M. A. Haque, E. Topal and E. Lilford, A numerical study for a mining project using real options valuation under commodity price uncertainty, Resources Policy, 39 (2014), 115-123.
doi: 10.1016/j.resourpol.2013.12.004.
|
[22]
|
C. C. Huang and S. Wang, A power penalty approach to a nonlinear complementary problem, Operations Research Letters, 38 (2010), 72-76.
doi: 10.1016/j.orl.2009.09.009.
|
[23]
|
J. C. Hull, Options, Futures And Other Derivatives (9th Edition), Pearson Education, Harlow, 2014.
|
[24]
|
S. Jaimungal, M. O. de Souza and J. P. Zubelli, Real option pricing with mean-reverting investment and project value, The European Journal of Finance, 19 (2013), 625-644.
doi: 10.1080/1351847X.2011.601660.
|
[25]
|
C. Kanzow, Global optimization techniques for mixed complementarity problems, J. Glob. Optim., 16 (2000), 1-21.
doi: 10.1023/A:1008331803982.
|
[26]
|
D. C. Lesmana and S. Wang, Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs, Applied Mathematics & Computation, 251 (2015), 318–330.
doi: 10.1016/j.amc.2014.11.060.
|
[27]
|
D. C. Lesmana and S. Wang, A numerical scheme for pricing American options with transaction costs under a jump diffusion process, J. Ind. Manag. Optim., 13 (2017), 1793–1813.
doi: 10.3934/jimo.2017019.
|
[28]
|
N. Li and S. Wang, Pricing options on investment project expansions under commodity price uncertainty, J. Ind. Manag. Optim., 15 (2019), 261–273.
doi: 10.3934/jimo.2018042.
|
[29]
|
W. Li and S. Wang, Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme, J. Ind. Manag. Optim., 9 (2013), 365–398.
doi: 10.3934/jimo.2013.9.365.
|
[30]
|
D. Li and M. Fukushima, Smoothing Newton and Quasi-Newton Methods for Mixed Complementarity Problems, Computational Optimization and Applications, 17 (2000), 203–230.
doi: 10.1023/A:1026502415830.
|
[31]
|
A. Moel and P. Tufano, When are real options exercised? An empirical study of mine closings, Review of Financial Studies, 15 (2002), 35-64.
|
[32]
|
N. Moyen, M. Slade and R. Uppal, Valuing risk and flexibility – a comparison of methods, Resources Policy, 22 (1996), 63-74.
|
[33]
|
S. C. Myers, Finance theory and financial strategy, Interfaces, 14 (1984), 126-137.
doi: 10.1287/inte.14.1.126.
|
[34]
|
B. F. Nielsen, O. Skavhaug and A. Tveito., Penalty and front-fixing methods for the numerical solution of American option problems, J. Comp. Fin., 5 (2002), 69-97.
doi: 10.21314/JCF.2002.084.
|
[35]
|
F. A. Potra and Y. Ye, Interior-point methods for nonlinear complementarity problems, Journal of Optimization Theory & Applications, 88 (1996), 617-642.
doi: 10.1007/BF02192201.
|
[36]
|
J. Savolainen, Real options in metal mining project valuation: Review of literature, Resources Policy, 50 (2016), 49-65.
doi: 10.1016/j.resourpol.2016.08.007.
|
[37]
|
R. Seydel, Tools for Computational Finance, Springer Verlag, London, 2017.
doi: 10.1007/978-1-4471-7338-0.
|
[38]
|
L. Trigeorgis, Real Options, Princeton Series in Applied Mathematics, The MIT Press,
Princeton, NJ, 1996.
|
[39]
|
R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Engelwood Cliffs, NJ, 1962.
|
[40]
|
S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA J. Numer. Anal., 24 (2004), 699-720.
doi: 10.1093/imanum/24.4.699.
|
[41]
|
S. Wang, An interior penalty method for a large-scale finite-dimensional nonlinear double obstacle problem, Applied Mathematical Modelling, 58 (2018), 217-228.
doi: 10.1016/j.apm.2017.07.038.
|
[42]
|
S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, Journal of Optimization Theory & Applications, 129 (2006), 227–254.
doi: 10.1007/s10957-006-9062-3.
|
[43]
|
S. Wang, S. Zhang and Z. Fang, A superconvergent fitted finite volume method for Black-Scholes equations governing European and American option valuation, Numerical Methods for Partial Differential Equations, 31 (2015), 1190–1208.
doi: 10.1002/num.21941.
|
[44]
|
S. Wang and K. Zhang, An interior penalty method for a finite-dimensional linear complementarity problem in financial engineering, Optimization Letters, 12 (2018), 1161-1178.
doi: 10.1007/s11590-016-1050-4.
|
[45]
|
P. Wilmott, J. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1993.
|
[46]
|
K. Zhang and S. Wang, Convergence property of an interior penalty approach to pricing American option, J. Ind. Manag. Optim., 7 (2011), 435-447.
doi: 10.3934/jimo.2011.7.435.
|
[47]
|
S. Zhang, X. Wang and H. Li, Modeling and computation of water management by real options, J. Ind. Manag. Optim., 14 (2018), 81-103.
doi: 10.3934/jimo.2017038.
|