[1]
|
M. Alizadeh, H. Eskandari and S. M. Sajadifar, A modified $(S-1, S)$ inventory system for deteriorating items with Poisson demand and non-zero lead time, Applied Mathematical Modelling, 38 (2014), 699-711.
doi: 10.1016/j.apm.2013.07.014.
|
[2]
|
W. J. Anderson, Continuous-time Markov Chains: An Applications-oriented Approach, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-3038-0.
|
[3]
|
J. R. Artalejo, Accessible bibliography on retrial queues, Mathematical and Computer Modelling, 51 (2010), 1071-1081.
doi: 10.1016/j.mcm.2009.12.011.
|
[4]
|
J. Artalejo and G. Falin, Standard and retrial queueing systems: A comparative analysis, Revista Matematica Complutense, 15 (2002), 101-129.
doi: 10.5209/rev_REMA.2002.v15.n1.16950.
|
[5]
|
J. R. Artalejo, A. Krishnamoorthy and M. J. Lopez-Herrero, Numerical analysis of $(s, S)$ inventory systems with repeated attempts, Annals of Operations Research, 141 (2006), 67-83.
doi: 10.1007/s10479-006-5294-8.
|
[6]
|
J. R. Artalejo and M. J. Lopez-Herrero, A simulation study of a discrete-time multiserver retrial queue with finite population, Journal of Statistical Planning and Inference, 137 (2007), 2536-2542.
doi: 10.1016/j.jspi.2006.04.018.
|
[7]
|
O. Baron, O. Berman and D. Perry, Continuous review inventory models for perishable items ordered in batches, Mathematical Methods of Operations Research, 72 (2010), 217-247.
doi: 10.1007/s00186-010-0318-1.
|
[8]
|
L. Bright and P. G. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes, Stochastic Models, 11 (1995), 497-525.
doi: 10.1080/15326349508807357.
|
[9]
|
B. D. Choi and B. Kim, Non-ergodicity criteria for denumerable continuous time Markov processes, Operations Research Letters, 32 (2004), 574-580.
doi: 10.1016/j.orl.2004.03.001.
|
[10]
|
G. Falin and J. G. Templeton, Retrial Queues (Vol. 75). CRC Press, 1997.
|
[11]
|
A. Gómez-Corral, A bibliographical guide to the analysis of retrial queues through matrix analytic techniques, Annals of Operations Research, 141 (2006), 163-191.
doi: 10.1007/s10479-006-5298-4.
|
[12]
|
Ü. Gürler and B. Y. Özkaya, Analysis of the $(s, S)$ policy for perishables with a random shelf life, IIE Transactions, 40 (2008), 759-781.
|
[13]
|
S. Kalpakam and G. Arivarignan, A continuous review perishable inventory model, Statistics, 19 (1988), 389-398.
doi: 10.1080/02331888808802112.
|
[14]
|
S. Kalpakam and G. Arivarignan, Inventory system with random supply quantity, Operations Research Spektrum, 12 (1990), 139-145.
doi: 10.1007/BF01719709.
|
[15]
|
S. Kalpakam and K. P. Sapna, Continuous review $(s, S)$ inventory system with random lifetimes and positive leadtimes, Operations Research Letters, 16 (1994), 115-119.
doi: 10.1016/0167-6377(94)90066-3.
|
[16]
|
S. Kalpakam and K. P. Sapna, $(S-1, S)$ Perishable systems with stochastic leadtimes, Mathematical and Computer Modelling, 21 (1995), 95-104.
doi: 10.1016/0895-7177(95)00026-X.
|
[17]
|
T. Karthick, B. Sivakumar and G. Arivarignan, An inventory system with two types of customers and retrial demands, International Journal of Systems Science: Operations & Logistics, 2 (2015), 90-112.
|
[18]
|
C. Kouki, E. Sahin, Z. Jemai and Y. Dallery, Periodic Review Inventory Policy for Perishables with Random Lifetime, In Eighth International Conference of Modeling and Simulation, 2010.
|
[19]
|
A. Krishnamoorthy and P. V. Ushakumari, Reliability of a k-out-of-n system with repair and retrial of failed units, Top, 7 (1999), 293-304.
doi: 10.1007/BF02564728.
|
[20]
|
S. Kumaraswamy and E. Sankarasubramanian, A continuous review of $(s, S)$ inventory systems in which depletion is due to demand and failure of units, Journal of the Operational Research Society, 32 (1981), 997-1001.
|
[21]
|
G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, Society for Industrial and Applied Mathematics, 1999.
doi: 10.1137/1.9780898719734.
|
[22]
|
A. S. Lawrence, B. Sivakumar and G. Arivarignan, A perishable inventory system with service facility and finite source, Applied Mathematical Modelling, 37 (2013), 4771-4786.
doi: 10.1016/j.apm.2012.09.018.
|
[23]
|
P. Vijaya Laxmi and M. L. Soujanya, Perishable inventory system with service interruptions, retrial demands and negative customers, Applied Mathematics and Computation, 262 (2015), 102-110.
doi: 10.1016/j.amc.2015.04.013.
|
[24]
|
Z. Lian and L. Liu, Continuous review perishable inventory systems: Models and heuristics, IIE Transactions, 33 (2001), 809-822.
|
[25]
|
L. Liu, (s, S) Continuous Review Models for Inventory with Random Lifetimes, Operations Research Letters, 9 (1990), 161-167.
doi: 10.1016/0167-6377(90)90014-V.
|
[26]
|
L. Liu and D. H. Shi, An $(s, S)$ model for inventory with exponential lifetimes and renewal demands, Naval Research Logistics, 46 (1999), 39-56.
doi: 10.1002/(SICI)1520-6750(199902)46:1<39::AID-NAV3>3.0.CO;2-G.
|
[27]
|
L. Liu and T. Yang, An $(s, S)$ random lifetime inventory model with a positive lead time, European Journal of Operational Research, 113 (1999), 52-63.
doi: 10.1016/0167-6377(90)90014-V.
|
[28]
|
E. Mohebbi and M. J. Posner, A continuous review inventory system with lost sales and variable lead time, Naval Research Logistics, 45 (1998), 259-278.
doi: 10.1002/(SICI)1520-6750(199804)45:3<259::AID-NAV2>3.0.CO;2-6.
|
[29]
|
S. Nahmias, Perishable inventory theory: A review, Operations Research, 30 (1982), 680-708.
|
[30]
|
S. Nahmias, Perishable Inventory Systems, Springer Science & Business Media, 2011.
|
[31]
|
M. F. Neuts, Matrix-geometric Solutions in Stochastic Models: An Algorithmic Approach, Courier Corporation, 1981.
|
[32]
|
F. Olsson and P. Tydesjö, Inventory problems with perishable items: Fixed lifetimes and backlogging, European Journal of Operational Research, 202 (2010), 131-137.
doi: 10.1016/j.ejor.2009.05.010.
|
[33]
|
C. Periyasamy, A finite source perishable inventory system with retrial demands and multiple server vacation, International Journal of Engineering Research and Technology, 2 (2013), 3802-3815.
|
[34]
|
G. P. Prastacos, Blood inventory management: An overview of theory and practice, Management Science, 30 (1984), 777-800.
doi: 10.1287/mnsc.30.7.777.
|
[35]
|
F. Raafat, Survey of literature on continuously deteriorating inventory models, Journal of the Operational Research society, 42 (1991), 27-37.
|
[36]
|
N. Ravichandran, Stochastic analysis of a continuous review perishable inventory system with positive lead time and Poisson demand, European Journal of Operational Research, 84 (1995), 444-457.
|
[37]
|
G. E. H. Reuter, Competition processes, In Proc. 4th Berkeley Symp. Math. Statist. Prob, 2
(1961), 421–430.
|
[38]
|
C. P. Schmidt and S. Nahmias, $(S-1, S)$ Policies for perishable inventory, Management Science, 31 (1985), 719-728.
doi: 10.1287/mnsc.31.6.719.
|
[39]
|
L. I. Sennott, P. A. Humblet and R. L. Tweedie, Mean drifts and the non-ergodicity of Markov chains, Operations Research, 31 (1983), 783-789.
doi: 10.1287/opre.31.4.783.
|
[40]
|
B. Sivakumar, Two-commodity inventory system with retrial demand, European Journal of Operational Research, 187 (2008), 70-83.
doi: 10.1016/j.ejor.2007.02.036.
|
[41]
|
B. Sivakumar, A perishable inventory system with retrial demands and a finite population, Journal of Computational and Applied Mathematics, 224 (2009), 29-38.
doi: 10.1016/j.cam.2008.03.041.
|
[42]
|
R. L. Tweedie, Criteria for ergodicity, exponential ergodicity and strong ergodicity of Markov processes, Journal of Applied Probability, 18 (1981), 122-130.
doi: 10.2307/3213172.
|
[43]
|
P. V. Ushakumari, On $(s, S)$ inventory system with random lead time and repeated demands, International Journal of Stochastic Analysis, 2006 (2006), Art. ID 81508, 22 pp.
doi: 10.1155/JAMSA/2006/81508.
|
[44]
|
H. J. Weiss, Optimal ordering policies for continuous review perishable inventory models, Operations Research, 28 (1980), 365-374.
doi: 10.1287/opre.28.2.365.
|