[1]
|
E. J. Anderson and B. S. Cheah, Capacitated lot-sizing with minimum batch sizes and setup times, International Journal of Production Economics, 30-31 (1993), 137-152.
doi: 10.1016/0925-5273(93)90087-2.
|
[2]
|
C. Arena, C. Cannarozzo and M. R. Mazzola, Exploring the potential and the boundaries of the rolling horizon technique for the management of reservoir systems with over-year behaviour, Water Resources Management, 31 (2017), 867-884.
doi: 10.1007/s11269-016-1550-0.
|
[3]
|
A. Bardhan A, M. Dawande, S. Gavirneni, Y. P. Mu and S. Sethi, Forecast and rolling horizons under demand substitution and production changeovers: analysis and insights, IIE Transactions, 45 (2013), 323-340.
|
[4]
|
J. D. Blackburn and H. Kunreuther, Planning horizons for the dynamic lot size model with backlogging, Management Science, 21 (1974), 251-255.
doi: 10.1287/mnsc.21.3.251.
|
[5]
|
S. Bylka, S. P. Sethi and G. Sorger, Minimal forecast horizons in equipment replacement models with multiple technologies and general switching costs, Naval Research Logistics, 39 (1992), 487-507.
doi: 10.1002/1520-6750(199206)39:4<487::AID-NAV3220390405>3.0.CO;2-6.
|
[6]
|
S. Chand, V. N. Hsu, S. Sethi and V. Deshpande, A dynamic lot sizing problem with multiple customers: Customer-specific shipping and backlogging costs, IIE Transactions, 39 (2007), 1059-1069.
|
[7]
|
S. Chand, V. N. Hsu and S. Sethi, Forecast, solution, and rolling horizons in operations management problems: A classified bibliography, Manufacturing and Service Operations Management, 4 (2002), 25-43.
|
[8]
|
S. Chand and T. E. Morton, Minimal forecast horizon procedures for dynamic lot size models, Naval Research Logistics Quarterly, 33 (1986), 111-122.
doi: 10.1002/nav.3800330110.
|
[9]
|
S. Chand S, Se thi S P and J. M. Proth, Existence of forecast horizons in undisconted discrete time lot-size model, Operations Research, 38 (1990), 884-892.
doi: 10.1287/opre.38.5.884.
|
[10]
|
S. Chand, S. P. Sethi and G. Sorger, Forecast horizons in the discounted dynamic lot size model, Management Science, 38 (1992), 1034-1048.
|
[11]
|
S. Chand and S. P. Sethi, A dynamic lot sizing model with learning in setups, Operations Research, 38 (1990), 644-655.
doi: 10.1287/opre.38.4.644.
|
[12]
|
T. Cheevaprawatdomrong, I. E. Schochetman, R. L. Smith and A. Garcia, Solution and forecast horizons for infinite-horizon nonhomogeneous Markov Decision Process, Mathematics of Operations Research, 32 (2007), 51-72.
doi: 10.1287/moor.1060.0224.
|
[13]
|
T. Cheevaprawatdomrong and R. L. Smith, Infinite horizon production scheduling in time-varying systems under stochastic demand, Operations Research, 52 (2004), 105-115.
doi: 10.1287/opre.1030.0080.
|
[14]
|
M. Constantino, Lower bounds in lot-sizing models: A polyhedral study, Mathematics of Operations Research, 23 (1998), 101-118.
doi: 10.1287/moor.23.1.101.
|
[15]
|
M. Dawande, S. Gavirneni, Y. P. Mu, S. Sethi and C. Sriskandarajah, On the interaction between demand substitution and production changeovers, Manufacturing and Service Operations Management, 12 (2010), 682-691.
|
[16]
|
M. Dawande, S. Gavirneni, S. Naranpanawe and S. Sethi, Computing minimal forecast horizons: An integer programming approach, Journal of Mathematical Modelling and Algorithm, 5 (2006), 239-258.
doi: 10.1007/s10852-005-9012-3.
|
[17]
|
M. Dawande, S. Gavirneni, S. Naranpanawe and S. Sethi, Forecast horizons for a class of dynamic lot-size problems under discrete future demand, Operations Research, 55 (2007), 688-702.
doi: 10.1287/opre.1060.0378.
|
[18]
|
M. Dawande, S. Gavirneni, S. Naranpanawe and S. Sethi, Discrete forecast horizons for two-product variants of the dynamic lot-size problem, International Journal of Production Economics, 120 (2009), 430-436.
|
[19]
|
G. D. Eppen, F. J. Gould and B. P. Pashigian, Extensions of the planning horizon theorem in the dynamic lot size model, Management Science, 15 (1969), 268-277.
doi: 10.1287/mnsc.15.5.268.
|
[20]
|
A. Federgruen and M. Tzur, The dynamic lot-sizing model with backlogging: A simple O(nlogn) algorithm and minimal forecast horizon procedure, Naval Research Logistics, 40 (1993), 459-478.
doi: 10.1002/1520-6750(199306)40:4<459::AID-NAV3220400404>3.0.CO;2-8.
|
[21]
|
A. Federgruen and M. Tzur, Minimal forecast horizons and a new planning procedure for the general dynamic lot sizing model: Nervousness revisited, Operations Research, 42 (1994), 390-575.
doi: 10.1287/opre.42.3.456.
|
[22]
|
A. Federgruen and M. Tzur, Fast solution and detection of minimal forecast horizons in dynamic programs with a single indicator of the future: Applications to dynamic lot-sizing models, Management Science, 41 (1995), 749-936.
doi: 10.1287/mnsc.41.5.874.
|
[23]
|
A. Federgruen and M. Tzur, Detection of minimal forecast horizons in dynamic programs with multiple indicators of the future, Naval Research Logistics, 43 (1996), 169-189.
doi: 10.1002/(SICI)1520-6750(199603)43:2<169::AID-NAV2>3.0.CO;2-8.
|
[24]
|
A. Garcia, Forecast horizons for a class of dynamic Games, Journal of Optimization Theory and Applications, 122 (2004), 471-486.
doi: 10.1023/B:JOTA.0000042591.71156.89.
|
[25]
|
A. Ghate and R. L. Smith, Optimal backlogging over an infinite horizon under time-varying convex production and inventory costs, Manufacturing and Service Operations Management, 11 (2009), 191-372.
doi: 10.1287/msom.1080.0218.
|
[26]
|
A. Goerler and S. Voß, Dynamic lot-sizing with rework of defective items and minimum lot-size constraints, International Journal of Production Research, 54 (2016), 2284-2297.
doi: 10.1080/00207543.2015.1070970.
|
[27]
|
B. Hellion, F. Mangione and B. Penz, A polynomial time algorithm to solve the single-item capacitated lot sizing problem with minimum order quantities and concave costs, European Journal of Operational Research, 222 (2012), 10-16.
doi: 10.1016/j.ejor.2012.04.024.
|
[28]
|
B. Hellion, F. Mangione and B. Penz, Corrigendum to "A polynomial time algorithm to solve the single-item capacitated lot sizing problem with minimum order quantities and concave costs" [Eur. J. Oper. Res., 222 (2012), 10–16], European Journal of Operational Research, 229 (2013), 279.
|
[29]
|
B. Hellion, F. Mangione and B. Penz, A polynomial time algorithm for the single-item lot sizing problem with capacities, minimum order quantities and dynamic time windows, Operations Research Letters, 42 (2014), 500-504.
doi: 10.1016/j.orl.2014.08.010.
|
[30]
|
V. N. Hsu, Dynamic economic lot size model with perishable inventory, Management Science, 46 (2000), 1013-1169.
doi: 10.1287/mnsc.46.8.1159.12021.
|
[31]
|
V. N. Hsu, An economic lot size model for perishable products with age-dependent inventory and backorder costs, IIE Transactions, 35 (2003), 775-780.
doi: 10.1080/07408170304352.
|
[32]
|
F. Y. Jing and Z. R. Lan, Forecast horizon of multi-item dynamic lot size model with perishable inventory, PLOS ONE, 12 (2017), e0187725.
doi: 10.1371/journal.pone.0187725.
|
[33]
|
R. A. Lundin and T. E. Morton, Planning horizons for the dynamic lot size model: Zabel vs. protective procedures and computational results, Operations Research, 23 (1975), 711-734.
doi: 10.1287/opre.23.4.711.
|
[34]
|
I. Okhrin and K. Richter, An $O(T^{3})$ algorithm for the capacitated dynamic lot sizing problem with minimum order quantities, European Journal of Operational Research, 211 (2011), 507-514.
doi: 10.1016/j.ejor.2011.01.007.
|
[35]
|
I. Okhrin and K. Richter, The linear dynamic lot size problem with minimum order quantity, International Journal of Production Economics, 133 (2011), 688-693.
doi: 10.1016/j.ijpe.2011.05.017.
|
[36]
|
Y. W. Park and D. Klabjan, Lot sizing with minimum order quantity, Discrete Applied Mathematics, 181 (2015), 235-254.
doi: 10.1016/j.dam.2014.09.015.
|
[37]
|
P. Pineyro and O. Viera, Inventory policies for the economic lot-sizing problem with remanufacturing and final disposal options, Journal of Industrial & Management Optimization, 5 (2009), 217-238.
doi: 10.3934/jimo.2009.5.217.
|
[38]
|
E. Porras and R. Dekker, An efficient optimal solution method for the joint replenishment problem with minimum order quantities, European Journal of Operational Research, 174 (2006), 1595-1615.
doi: 10.1016/j.ejor.2005.02.056.
|
[39]
|
R. A. Sandbothe and G. L. Thompson, A forward algorithm for the capacitated lot size model with stockouts, Operations Research, 38 (1990), 474-486.
doi: 10.1287/opre.38.3.474.
|
[40]
|
F. Z. Sargut and G. Içık, Dynamic economic lot size model with perishable inventory and capacity constraints, Applied Mathematical Modelling, 48 (2017), 806-820.
doi: 10.1016/j.apm.2017.02.024.
|
[41]
|
F. Z. Sargut and H. E. Romeijn, Capacitated requirements planning with pricing flexibility and general cost and revenue functions, Journal of Industrial & Management Optimization, 3 (2007), 87-98.
doi: 10.3934/jimo.2007.3.87.
|
[42]
|
S. Sethi and S. Chand, Multiple finite production rate dynamic lot size inventory models, Operations Research, 29 (1981), 931-944.
doi: 10.1287/opre.29.5.931.
|
[43]
|
R. L. Smith and R. Q. Zhang, Infinite horizon production planning in time-varying systems with convex production and inventory costs, Management Science, 44 (1998), 1167-1320.
doi: 10.1287/mnsc.44.9.1313.
|
[44]
|
C. Suerie, Campaign planning in time-indexed model formulations, International Journal of Production Research, 43 (2005), 49-66.
doi: 10.1080/00207540412331285823.
|
[45]
|
S. Teyarachakul, S. Chand and M. Tzur, Lot sizing with learning and forgetting in setups: Analytical results and insights, Naval Research Logistics, 63 (2016), 93-108.
doi: 10.1002/nav.21681.
|
[46]
|
M. Tzur, Learning in setups: Analysis, minimal forecast horizons, and algorithms, Management Science, 42 (1996), 1627-1752.
doi: 10.1287/mnsc.42.12.1732.
|
[47]
|
S. Voß and D. L. Woodruff, Introduction to Computational Optimization Models for Production Planning in a Supply Chain, Second edition. Springer-Verlag, Berlin, 2006.
|
[48]
|
H. M. Wagner and T. M. Whitin, Dynamic version of the economic lot size model, Management Science, 5 (1958), 89-96.
doi: 10.1287/mnsc.5.1.89.
|
[49]
|
J. Y. You and X. M. Cai, Determining forecast and decision horizons for reservoir operations under hedging policies, Water Resources Research, 44 (2008), 2276-2283.
doi: 10.1061/40927(243)553.
|
[50]
|
J. Y. You and C. W. Yu, Theoretical error convergence of limited forecast horizon in optimal reservoir operating decisions, Water Resources Research, 49 (2013), 1728-1734.
doi: 10.1002/wrcr.20114.
|
[51]
|
E. Zabel, Some generalizations of an inventory planning horizon theorem, Management Science, 10 (1964), 397-600.
doi: 10.1287/mnsc.10.3.465.
|
[52]
|
W. I. Zangwill, A backlogging model and a multi-echelon model of a dynamic economic lot size production system-a network approach, Management Science, 15 (1969), 459-472.
doi: 10.1287/mnsc.15.9.506.
|
[53]
|
T. T. G. Zhao, D. W. Yang, X. M. Cai, J. S. Zhao and H. Wang, Identifying effective forecast horizon for real-time reservoir operation under a limited inflow forecast, Water Resources Research, 48 (2012), 1540.
doi: 10.1029/2011WR010623.
|