[1]
|
D. O. Awoyemi, A p–stable linear multistep method for solving general third order ordinary differential equations, International Journal of Computer Mathematics, 80 (2003), 987-993.
doi: 10.1080/0020716031000079572.
|
[2]
|
S. Chakraverty and S. Mall, Regression based weight generation algorithm in neural network for solution of initial and boundary value problems, Neural Computing and Applications, 25 (2014), 585-594.
doi: 10.1007/s00521-013-1526-4.
|
[3]
|
E. H. Doha, A. H. Bhrawy and R. M. Hafez, On shifted Jacobi spectral method for high–order multi–point boundary value problems, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 3802-3810.
doi: 10.1016/j.cnsns.2012.02.027.
|
[4]
|
N. M. Duy, H. See and T. T. Cong, A spectral collocation technique based on integrated chebyshev polynomials for biharmonic problems in irregular domains, Applied Mathematical Modelling, 33 (2009), 284-299.
doi: 10.1016/j.apm.2007.11.002.
|
[5]
|
T. Hofmann, B. Schölkopf and A. J. Smola, Kernel methods in machine learning, Annals of Statistics, 36 (2008), 1171-1220.
doi: 10.1214/009053607000000677.
|
[6]
|
G. B. Huang, Q. Y. Zhu and C. K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, 70 (2006), 489-501.
doi: 10.1016/j.neucom.2005.12.126.
|
[7]
|
K. Hussain, F. Ismail, N. Senu and F. Rabiei, Fourth–order improved Runge–Kutta method for directly solving special third–order ordinary differential equations, Iranian Journal of Science and Technology Transaction A–Science, 41 (2017), 429-437.
doi: 10.1007/s40995-017-0258-1.
|
[8]
|
K. Hussain, F. Ismail and N. Senu, Solving directly special fourth–order ordinary differential equations using Runge–Kutta type method, Journal of Computational and Applied Mathematics, 306 (2016), 179-199.
doi: 10.1016/j.cam.2016.04.002.
|
[9]
|
S. Islam, I. Aziz and B. Šarler, The numerical solution of second–order boundary value problems by collocation method with the Haar wavelets, Mathematical and Computer Modelling, 52 (2010), 1577-1590.
doi: 10.1016/j.mcm.2010.06.023.
|
[10]
|
D. R. Kincaid and E. W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3nd edition, Brooks/Cole, Pacific Grove, CA, 1991.
|
[11]
|
J. Kierzenka and L. F. Shampine, A BVP solver that controls residual and error, Journal of Numerical Analysis, Industrial and Applied Mathematics, 3 (2008), 27-41.
|
[12]
|
M. Lakestani and M. Dehgan, The solution of a second–order nonlinear differential equation with Neumann boundary conditions using semi–orthogonal B–spline wavelets, International Journal of Computer Mathematics, 83 (2006), 685-694.
doi: 10.1080/00207160601025656.
|
[13]
|
Z. A. Majid and M. Suleiman, Direct integration method implicit variable steps method for solving higher order systems of ordinary differential equations directly, Sains Malaysiana, 35 (2006), 63-68.
|
[14]
|
Z. A. Majid, N. A. Azmi, M. Suleiman and Z. B. Ibrahaim, Solving directly general third order ordinary differential equations using two–point four step block method, Sains Malaysiana, 41 (2012), 623-632.
|
[15]
|
A. Malek and R. S. Beidokhti, Numerical solution for high order differential equations using a hybrid neural network–optimization method, Applied Mathematics and Computation, 183 (2006), 260-271.
doi: 10.1016/j.amc.2006.05.068.
|
[16]
|
S. Mall and S. Chakraverty, Application of Legendre neural network for solving ordinary differential equations, Applied Soft Computing, 43 (2016), 347-356.
|
[17]
|
S. Mall and S. Chakraverty, Chebyshev neural network based model for solving Lane–Emden type equations, Applied Mathematics and Computation, 247 (2014), 100-114.
doi: 10.1016/j.amc.2014.08.085.
|
[18]
|
S. Mehrkanoon, A direct variable step block multistep method for solving general third–order ODEs, Numerical Algorithms, 57 (2011), 53-66.
doi: 10.1007/s11075-010-9413-x.
|
[19]
|
S. Mehrkanoon, T. Falck and J. A. K. Suykens, Approximate solutions to ordinary differential equations using least squares support vector machines, IEEE Transactions on Neural Networks and Learning Systems, 23 (2012), 1356-1367.
doi: 10.1109/TNNLS.2012.2202126.
|
[20]
|
S. Mehrkanoon and J. A. K. Suykens, Learning solutions to partial differential equations using LS–SVM, Neurocomputing, 159 (2015), 105-116.
doi: 10.1016/j.neucom.2015.02.013.
|
[21]
|
S. Mehrkanoon and J. A. K. Suykens, LS–SVM approximate solution to linear time varying descriptor systems, Automatica, 48 (2012), 2502-2511.
doi: 10.1016/j.automatica.2012.06.095.
|
[22]
|
J. Mercer, Functions of positive and negative type and their connection with the theory of integral equations, Philosophical Transactions of the Royal Society of London, 209 (1909), 415-446.
|
[23]
|
R. Noberg, Differential equations for moments of present values in life insurance, Mathematics and Economics, 17 (1995), 171-180.
doi: 10.1016/0167-6687(95)00019-O.
|
[24]
|
K. Parand and M. Hemami, Numerical study of astrophysics equations by meshless collocation method based on compactly supported radial basis function, International Journal of Applied and Computational Mathematics, 3 (2017), 1053-1075.
doi: 10.1007/s40819-016-0161-z.
|
[25]
|
H. J. Ricardo, A Modern Introduction to Differential Equations, CRC Press, Boca Raton, FL, 2010.
|
[26]
|
P. P. See, Z. A. Majid and M. Suleiman, Three–step block method for solving nonlinear boundary value problems, Abstract and Applied Analysis, 2014 (2014), Art. ID 379829, 8 pp.
doi: 10.1155/2014/379829.
|
[27]
|
P. K. Srivastava, M. Kumar and R. N. Mohapatra, Quintic nonpolynomial spline method for the solution of a second–order boundary value problem with engineering applications, Computers and Mathematics with Applications, 62 (2011), 1707-1714.
doi: 10.1016/j.camwa.2011.06.012.
|
[28]
|
H. Sun, M. Hou, Y. Yang, T. Zhang, F. Weng and F. Han, Solving partial differential equation based on Bernstein neural network and extreme learning machine algorithm, Neural Processing Letters, (2018), 1–20.
doi: 10.1007/s11063-018-9911-8.
|
[29]
|
J. A. K. Suykens and J. Vandewalle, Least squares support vector machine classifiers, Neural Processing Letters, 9 (1999) 293–300.
|
[30]
|
I. A. Tirmizi and E. H. Twizell, Higher–order finite difference methods for nonlinear second–order two point boundary value problems, Applied Mathematics Letter, 15 (2002), 897-902.
doi: 10.1016/S0893-9659(02)00060-5.
|
[31]
|
V. N. Vapnik, The Nature of Statistical Learning Theory, 1nd edition, Springer–Verlag, New York, 1995.
doi: 10.1007/978-1-4757-2440-0.
|
[32]
|
Q. Wang, K. Wang and S. Chen, Least squares approximation method for the solution of Volterra–Fredholm integral equations, Journal of Computational and Applied Mathematics, 272 (2014), 141-147.
doi: 10.1016/j.cam.2014.05.010.
|
[33]
|
H. S. Yazdi, M. Pakdaman and H. Modaghegh, Unsupervised kernel least mean square algorithm for solving ordinary differential equations, Neurocomputing, 74 (2011), 2062-2071.
|
[34]
|
G. Zhang, S. Wang and Y. Wang, LS–SVM approximate solution for affine nonlinear systems with partially unknown functions, Journal of Industrial and Management Optimization, 10 (2014), 621-636.
doi: 10.3934/jimo.2014.10.621.
|