-
Previous Article
Statistical inference of semidefinite programming with multiple parameters
- JIMO Home
- This Issue
-
Next Article
A class of accelerated conjugate-gradient-like methods based on a modified secant equation
On phaseless compressed sensing with partially known support
School of Mathematics, Tianjin University, Tianjin 300072, China |
We establish a theoretical framework for the problem of phaseless compressed sensing with partially known signal support, which aims at generalizing the Null Space Property and the Strong Restricted Isometry Property from phase retrieval to partially sparse phase retrieval. We first introduce the concepts of the Partial Null Space Property (P-NSP) and the Partial Strong Restricted Isometry Property (P-SRIP); and then show that both the P-NSP and the P-SRIP are exact recovery conditions for the problem of partially sparse phase retrieval. We also prove that a random Gaussian matrix $ A\in \mathbb{R}^{m\times n} $ satisfies the P-SRIP with high probability when $ m = O(t(k-r)\log(\frac{n-r}{t(k-r)})). $
References:
[1] |
B. Alexeev, A. S. Bandeira, M. Fickus and D. G. Mixon,
Phase retrieval with polarization, SIAM J. Imag. Sci., 7 (2014), 35-66.
doi: 10.1137/12089939X. |
[2] |
R. Balan, B. Bodmann, P. G. Casazza and D. Edidin,
Saving phase: injectivity and stability for phase retrieval, J. Fourier Anal. Appl., 15 (2009), 488-501.
doi: 10.1007/s00041-009-9065-1. |
[3] |
A.S. Bandeira, J. Cahill, D. Mixon and A. Nelson,
Painless reconstruction from magnitudes of frame coefficients, Appl. Comput. Harmon. Anal., 37 (2014), 106-125.
doi: 10.1016/j.acha.2013.10.002. |
[4] |
A. S. Bandeira, K. Scheinberg and L. N. Vicente, On partial sparse recovery, preprint, arXiv: 1304.2809 (2013). Google Scholar |
[5] |
B. Bodmann and N. Hammen,
Stable phase retrieval with low-redundancy frames, Adv. Comput. Math., 41 (2015), 317-331.
doi: 10.1007/s10444-014-9359-y. |
[6] |
O. Bunk, A. Diza, F. Pfeiffer, C. David, B. Schmitt, D. K. Satapathy and J. F. van der Veen,
Diffractive imaging for periodic samples: Retrieving one-dimensional concentration profiles across microfluidic channels, Acta Crystallogr., A, Found. Crystallogr., 63 (2007), 306-314.
doi: 10.1107/S0108767307021903. |
[7] |
T. Cai and A. Zhang,
Sparse representation of a polytope and recovery of sparse signals and low-rank matrices, IEEE Trans. Inf. Theory, 60 (2014), 122-132.
doi: 10.1109/TIT.2013.2288639. |
[8] |
E. J. Candès,
The restricted isometry property and its implications for compressed sensing, C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 589-592.
doi: 10.1016/j.crma.2008.03.014. |
[9] |
E. J. Candès, Y. C. Eldar, T. Strohmer and V. Voroninski,
Phase retrieval via completion, SIAM Review, 57 (2015), 225-251.
doi: 10.1137/151005099. |
[10] |
E. J. Candès, T. Strohmer and V. Voroninski,
Exact and stable signal recovery from magnitude measurements via convex programming, Commun. Pure Appl. Math., 66 (2013), 1241-1274.
doi: 10.1002/cpa.21432. |
[11] |
A. Conca, D. Edidin, M. Hering and C. Vinzant,
An algebraic characterization of injectivity in phase retrieval, Appl. Comput. Harmon. Anal., 38 (2015), 346-356.
doi: 10.1016/j.acha.2014.06.005. |
[12] |
J. V. Corbett,
The pauli problem, state reconstruction and quantum real numbers, Rep. Math. Phys., 57 (2006), 53-68.
doi: 10.1016/S0034-4877(06)80008-X. |
[13] |
L. Demanet and V. Jugnon, Convex recovery from interferometric measurements, IEEE Trans. Comput. Imaging, 3 (2017), 282–295, arXiv: 1307.6864.
doi: 10.1109/TCI.2017.2688923. |
[14] |
M. P. Friedlander, H. Mansour, R. Saab and O. Yilmaz,
Recovering compressively sampled signals using partial support information, IEEE Trans. Inf. Theory, 58 (2012), 1122-1134.
doi: 10.1109/TIT.2011.2167214. |
[15] |
B. Gao, Y. Wang and Z. Q. Xu,
Stable signal recovery from phaseless measurements, J. Fourier Anal. Appl., 22 (2016), 787-808.
doi: 10.1007/s00041-015-9434-x. |
[16] |
R. W. Harrison, Phase problem in crystallography, J. Opt. Soc. Am. A., 10 (1993), 1046-1055. Google Scholar |
[17] |
L. Jacques,
A short note on compressed sensing with partially known signal support, Signal Process., 90 (2010), 3308-3312.
doi: 10.1016/j.sigpro.2010.05.025. |
[18] |
L. C. Kong and N. H. Xiu, Low-rank matrix recovery via nonconvex schatten p-minimization, Asia-Pac. J. Oper. Res., 30 (2013), 1340010.
doi: 10.1142/S0217595913400101. |
[19] |
J. Miao, T. Ishikawa, Q. Shen and T. Earnest, Extending X-ray crystallography to allow the imagine of non-crystalline materials, cells and single protein complexes, Annu. Rev. Phys. Chem., 59 (2008), 387-410. Google Scholar |
[20] |
R. P. Millane,
Phase retrieval in crystallography and optics, J. Opt. Soc. Am. A., 7 (1990), 394-411.
doi: 10.1364/JOSAA.7.000394. |
[21] |
D. T. Peng, N. H. Xiu and J. Yu,
$S_{1/2}$ regularization methods and fixed point algorithms for affine rank minimization problems, Comput. Optim. Appl., 67 (2017), 543-569.
doi: 10.1007/s10589-017-9898-5. |
[22] |
H. Qiu, X. Chen, W. Liu, G. Zhou, Y. J. Wang and J. Lai,
A fast $l_1$-solver and its applications to robust face recognition, J. Ind. Manag. Optim., 8 (2012), 163-178.
doi: 10.3934/jimo.2012.8.163. |
[23] |
N. Vaswani and W. Lu,
Modified-CS: Modifying compressive sensing for problems with partially known support, IEEE Trans. Signal Process., 58 (2010), 4595-4607.
doi: 10.1109/TSP.2010.2051150. |
[24] |
V. Voroninski and Z. Q. Xu,
A strong restricted isometry property, with an application to phaseless compressed sensing, Appl. Comput. Harmon. Anal., 40 (2016), 386-395.
doi: 10.1016/j.acha.2015.06.004. |
[25] |
A. Walther,
The question of phase retrieval in optics, J. Modern Opt., 10 (1963), 41-49.
doi: 10.1080/713817747. |
[26] |
Y. Wang and Z. Q. Xu,
Phase retrieval for sparse signals, Appl. Comput. Harmon. Anal., 37 (2014), 531-544.
doi: 10.1016/j.acha.2014.04.001. |
[27] |
Y. Wang, W. Liu, L. Caccetta and G. Zhou,
Parameter selection for nonnegative $l_1$ matrix/tensor sparse decomposition, Oper. Res. Lett., 43 (2015), 423-426.
doi: 10.1016/j.orl.2015.06.005. |
[28] |
Y. Wang, G. Zhou, L. Caccetta and W. Liu,
An alternative Lagrange-dual based algorithm for sparse signal reconstruction, IEEE Trans. Signal Process., 59 (2011), 1895-1901.
doi: 10.1109/TSP.2010.2103066. |
[29] |
C. L. Xud an Y. B. Zhao, Uniqueness conditions for a class of $l_0$-minimization problems, Asia-Pac. J. Oper. Res., 32 (2015), 1540002, 17pp.
doi: 10.1142/S0217595915400023. |
[30] |
G. W. You, Z. H. Huang and Y. Wang,
A theoretical perspective of solving phaseless compressive sensing via its nonconvex relaxation, Inform. Sci., 415 (2017), 254-268.
doi: 10.1016/j.ins.2017.06.020. |
[31] |
L. J. Zhang, L. C. Kong, Y. Li and S. L. Zhou,
A smoothing iterative method for quantile regression with nonconvex $l_p$ penalty, J. Ind. Manag. Optim., 13 (2017), 93-112.
doi: 10.3934/jimo.2016006. |
show all references
References:
[1] |
B. Alexeev, A. S. Bandeira, M. Fickus and D. G. Mixon,
Phase retrieval with polarization, SIAM J. Imag. Sci., 7 (2014), 35-66.
doi: 10.1137/12089939X. |
[2] |
R. Balan, B. Bodmann, P. G. Casazza and D. Edidin,
Saving phase: injectivity and stability for phase retrieval, J. Fourier Anal. Appl., 15 (2009), 488-501.
doi: 10.1007/s00041-009-9065-1. |
[3] |
A.S. Bandeira, J. Cahill, D. Mixon and A. Nelson,
Painless reconstruction from magnitudes of frame coefficients, Appl. Comput. Harmon. Anal., 37 (2014), 106-125.
doi: 10.1016/j.acha.2013.10.002. |
[4] |
A. S. Bandeira, K. Scheinberg and L. N. Vicente, On partial sparse recovery, preprint, arXiv: 1304.2809 (2013). Google Scholar |
[5] |
B. Bodmann and N. Hammen,
Stable phase retrieval with low-redundancy frames, Adv. Comput. Math., 41 (2015), 317-331.
doi: 10.1007/s10444-014-9359-y. |
[6] |
O. Bunk, A. Diza, F. Pfeiffer, C. David, B. Schmitt, D. K. Satapathy and J. F. van der Veen,
Diffractive imaging for periodic samples: Retrieving one-dimensional concentration profiles across microfluidic channels, Acta Crystallogr., A, Found. Crystallogr., 63 (2007), 306-314.
doi: 10.1107/S0108767307021903. |
[7] |
T. Cai and A. Zhang,
Sparse representation of a polytope and recovery of sparse signals and low-rank matrices, IEEE Trans. Inf. Theory, 60 (2014), 122-132.
doi: 10.1109/TIT.2013.2288639. |
[8] |
E. J. Candès,
The restricted isometry property and its implications for compressed sensing, C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 589-592.
doi: 10.1016/j.crma.2008.03.014. |
[9] |
E. J. Candès, Y. C. Eldar, T. Strohmer and V. Voroninski,
Phase retrieval via completion, SIAM Review, 57 (2015), 225-251.
doi: 10.1137/151005099. |
[10] |
E. J. Candès, T. Strohmer and V. Voroninski,
Exact and stable signal recovery from magnitude measurements via convex programming, Commun. Pure Appl. Math., 66 (2013), 1241-1274.
doi: 10.1002/cpa.21432. |
[11] |
A. Conca, D. Edidin, M. Hering and C. Vinzant,
An algebraic characterization of injectivity in phase retrieval, Appl. Comput. Harmon. Anal., 38 (2015), 346-356.
doi: 10.1016/j.acha.2014.06.005. |
[12] |
J. V. Corbett,
The pauli problem, state reconstruction and quantum real numbers, Rep. Math. Phys., 57 (2006), 53-68.
doi: 10.1016/S0034-4877(06)80008-X. |
[13] |
L. Demanet and V. Jugnon, Convex recovery from interferometric measurements, IEEE Trans. Comput. Imaging, 3 (2017), 282–295, arXiv: 1307.6864.
doi: 10.1109/TCI.2017.2688923. |
[14] |
M. P. Friedlander, H. Mansour, R. Saab and O. Yilmaz,
Recovering compressively sampled signals using partial support information, IEEE Trans. Inf. Theory, 58 (2012), 1122-1134.
doi: 10.1109/TIT.2011.2167214. |
[15] |
B. Gao, Y. Wang and Z. Q. Xu,
Stable signal recovery from phaseless measurements, J. Fourier Anal. Appl., 22 (2016), 787-808.
doi: 10.1007/s00041-015-9434-x. |
[16] |
R. W. Harrison, Phase problem in crystallography, J. Opt. Soc. Am. A., 10 (1993), 1046-1055. Google Scholar |
[17] |
L. Jacques,
A short note on compressed sensing with partially known signal support, Signal Process., 90 (2010), 3308-3312.
doi: 10.1016/j.sigpro.2010.05.025. |
[18] |
L. C. Kong and N. H. Xiu, Low-rank matrix recovery via nonconvex schatten p-minimization, Asia-Pac. J. Oper. Res., 30 (2013), 1340010.
doi: 10.1142/S0217595913400101. |
[19] |
J. Miao, T. Ishikawa, Q. Shen and T. Earnest, Extending X-ray crystallography to allow the imagine of non-crystalline materials, cells and single protein complexes, Annu. Rev. Phys. Chem., 59 (2008), 387-410. Google Scholar |
[20] |
R. P. Millane,
Phase retrieval in crystallography and optics, J. Opt. Soc. Am. A., 7 (1990), 394-411.
doi: 10.1364/JOSAA.7.000394. |
[21] |
D. T. Peng, N. H. Xiu and J. Yu,
$S_{1/2}$ regularization methods and fixed point algorithms for affine rank minimization problems, Comput. Optim. Appl., 67 (2017), 543-569.
doi: 10.1007/s10589-017-9898-5. |
[22] |
H. Qiu, X. Chen, W. Liu, G. Zhou, Y. J. Wang and J. Lai,
A fast $l_1$-solver and its applications to robust face recognition, J. Ind. Manag. Optim., 8 (2012), 163-178.
doi: 10.3934/jimo.2012.8.163. |
[23] |
N. Vaswani and W. Lu,
Modified-CS: Modifying compressive sensing for problems with partially known support, IEEE Trans. Signal Process., 58 (2010), 4595-4607.
doi: 10.1109/TSP.2010.2051150. |
[24] |
V. Voroninski and Z. Q. Xu,
A strong restricted isometry property, with an application to phaseless compressed sensing, Appl. Comput. Harmon. Anal., 40 (2016), 386-395.
doi: 10.1016/j.acha.2015.06.004. |
[25] |
A. Walther,
The question of phase retrieval in optics, J. Modern Opt., 10 (1963), 41-49.
doi: 10.1080/713817747. |
[26] |
Y. Wang and Z. Q. Xu,
Phase retrieval for sparse signals, Appl. Comput. Harmon. Anal., 37 (2014), 531-544.
doi: 10.1016/j.acha.2014.04.001. |
[27] |
Y. Wang, W. Liu, L. Caccetta and G. Zhou,
Parameter selection for nonnegative $l_1$ matrix/tensor sparse decomposition, Oper. Res. Lett., 43 (2015), 423-426.
doi: 10.1016/j.orl.2015.06.005. |
[28] |
Y. Wang, G. Zhou, L. Caccetta and W. Liu,
An alternative Lagrange-dual based algorithm for sparse signal reconstruction, IEEE Trans. Signal Process., 59 (2011), 1895-1901.
doi: 10.1109/TSP.2010.2103066. |
[29] |
C. L. Xud an Y. B. Zhao, Uniqueness conditions for a class of $l_0$-minimization problems, Asia-Pac. J. Oper. Res., 32 (2015), 1540002, 17pp.
doi: 10.1142/S0217595915400023. |
[30] |
G. W. You, Z. H. Huang and Y. Wang,
A theoretical perspective of solving phaseless compressive sensing via its nonconvex relaxation, Inform. Sci., 415 (2017), 254-268.
doi: 10.1016/j.ins.2017.06.020. |
[31] |
L. J. Zhang, L. C. Kong, Y. Li and S. L. Zhou,
A smoothing iterative method for quantile regression with nonconvex $l_p$ penalty, J. Ind. Manag. Optim., 13 (2017), 93-112.
doi: 10.3934/jimo.2016006. |
[1] |
Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321 |
[2] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[3] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[4] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[5] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[6] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[7] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[8] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[9] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020027 |
[10] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[11] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[12] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[13] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]