May  2020, 16(3): 1527-1538. doi: 10.3934/jimo.2019015

Statistical inference of semidefinite programming with multiple parameters

School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China

* Corresponding author: Jiani Wang

Received  May 2018 Revised  October 2018 Published  March 2019

Fund Project: Jiani Wang is supported by NNSFC grant Nos. 11571059, 11731013 and 91330206

The parameters in the semidefinite programming problems generated by the average of a sample, may lead to the deviation of the optimal value and optimal solutions due to the uncertainty of the data. The statistical properties of estimates of the optimal value and the optimal solutions are given in this paper, when the estimated parameters are both in the objective function and in the constraints. This analysis is mainly based on the theory of the linear programming and the perturbation theory of the semidefinite programming.

Citation: Jiani Wang, Liwei Zhang. Statistical inference of semidefinite programming with multiple parameters. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1527-1538. doi: 10.3934/jimo.2019015
References:
[1]

F. AlizadehJ. P. A. Haeberly and M. L. Overton, Complementarity and nondegeneracy in semidefinite programming, Mathematical Programming, 77 (1997), 111-128.  doi: 10.1007/BF02614432.  Google Scholar

[2]

H. Bauer, Measure and Integration Theory (Vol. 26), Walter de Gruyter, Berlin, 2001. doi: 10.1515/9783110866209.  Google Scholar

[3]

P. Billingsley, Probability and Measure (3rd ed.), Wiley series in probability and mathematical statistics, New York, 1995.  Google Scholar

[4]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[5]

M. W. Browne, Fitting the factor analysis model, ETS Research Report Series, 1967 (1967), i–43. Google Scholar

[6]

E. J. Candés and B. Recht, Exact matrix completion via convex optimization, Foundations of Computational mathematics, 9 (2009), 717-772.  doi: 10.1007/s10208-009-9045-5.  Google Scholar

[7]

M. DürB. Jargalsaikhan and G. Still, Genericity results in linear conic programming–a tour d'horizon, Mathematics of Operations Research, 42 (2017), 77-94.  doi: 10.1287/moor.2016.0793.  Google Scholar

[8]

H. Fischer, A History of the Central Limit Theorem: From Classical to Modern Probability Theory, Springer, New York, 2011. doi: 10.1007/978-0-387-87857-7.  Google Scholar

[9]

A. Hald, A History of Mathematical Statistics from 1750 to 1930, Wiley, 1998.  Google Scholar

[10]

J.-B. Hiriart-Urruty, Fundamentals of Convex Analysis, Springer-Verlag, New York, 2001. doi: 10.1007/978-3-642-56468-0.  Google Scholar

[11]

H. B. Mann and A. Wald, On stochastic limit and order relationships, Annals of Mathematical Statistics, 14 (1943), 217-226.  doi: 10.1214/aoms/1177731415.  Google Scholar

[12]

A. Shapiro, Rank-reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis, Psychometrika, 47 (1982), 187-199.  doi: 10.1007/BF02296274.  Google Scholar

[13]

A. Shapiro, Statistical inference of semidefinite programming, Mathematical Programming, (2018), 1–21, Available from: http://www.optimization-online.org/DB\_HTML/2017/01/5842.html. doi: 10.1007/s10107-018-1250-z.  Google Scholar

[14]

A. Shapiro and K. Scheinberg, Duality and optimality conditions, in Handbook of Semidefinite Programming, Springer, Boston, MA, 27 (2000), 66–110. doi: 10.1007/978-1-4615-4381-7_4.  Google Scholar

[15]

A. Shapiro and J. M. F. Ten Berge, Statistical inference of minimum rank factor analysis, Psychometrika, 67 (2002), 79-94.  doi: 10.1007/BF02294710.  Google Scholar

[16]

E. Slutsky, Uber stochastische asymptoten und grenzwerte, Metron, 5 (1925), 3-89.   Google Scholar

[17]

M. J. Todd, Semidefinite optimization, Acta Numerica, 10 (2001), 515-560.  doi: 10.1017/S0962492901000071.  Google Scholar

[18] A. W. Van der Vaart, Asymptotic Statistics, Cambridge University Press, New York, 1998.  doi: 10.1017/CBO9780511802256.  Google Scholar

show all references

References:
[1]

F. AlizadehJ. P. A. Haeberly and M. L. Overton, Complementarity and nondegeneracy in semidefinite programming, Mathematical Programming, 77 (1997), 111-128.  doi: 10.1007/BF02614432.  Google Scholar

[2]

H. Bauer, Measure and Integration Theory (Vol. 26), Walter de Gruyter, Berlin, 2001. doi: 10.1515/9783110866209.  Google Scholar

[3]

P. Billingsley, Probability and Measure (3rd ed.), Wiley series in probability and mathematical statistics, New York, 1995.  Google Scholar

[4]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[5]

M. W. Browne, Fitting the factor analysis model, ETS Research Report Series, 1967 (1967), i–43. Google Scholar

[6]

E. J. Candés and B. Recht, Exact matrix completion via convex optimization, Foundations of Computational mathematics, 9 (2009), 717-772.  doi: 10.1007/s10208-009-9045-5.  Google Scholar

[7]

M. DürB. Jargalsaikhan and G. Still, Genericity results in linear conic programming–a tour d'horizon, Mathematics of Operations Research, 42 (2017), 77-94.  doi: 10.1287/moor.2016.0793.  Google Scholar

[8]

H. Fischer, A History of the Central Limit Theorem: From Classical to Modern Probability Theory, Springer, New York, 2011. doi: 10.1007/978-0-387-87857-7.  Google Scholar

[9]

A. Hald, A History of Mathematical Statistics from 1750 to 1930, Wiley, 1998.  Google Scholar

[10]

J.-B. Hiriart-Urruty, Fundamentals of Convex Analysis, Springer-Verlag, New York, 2001. doi: 10.1007/978-3-642-56468-0.  Google Scholar

[11]

H. B. Mann and A. Wald, On stochastic limit and order relationships, Annals of Mathematical Statistics, 14 (1943), 217-226.  doi: 10.1214/aoms/1177731415.  Google Scholar

[12]

A. Shapiro, Rank-reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis, Psychometrika, 47 (1982), 187-199.  doi: 10.1007/BF02296274.  Google Scholar

[13]

A. Shapiro, Statistical inference of semidefinite programming, Mathematical Programming, (2018), 1–21, Available from: http://www.optimization-online.org/DB\_HTML/2017/01/5842.html. doi: 10.1007/s10107-018-1250-z.  Google Scholar

[14]

A. Shapiro and K. Scheinberg, Duality and optimality conditions, in Handbook of Semidefinite Programming, Springer, Boston, MA, 27 (2000), 66–110. doi: 10.1007/978-1-4615-4381-7_4.  Google Scholar

[15]

A. Shapiro and J. M. F. Ten Berge, Statistical inference of minimum rank factor analysis, Psychometrika, 67 (2002), 79-94.  doi: 10.1007/BF02294710.  Google Scholar

[16]

E. Slutsky, Uber stochastische asymptoten und grenzwerte, Metron, 5 (1925), 3-89.   Google Scholar

[17]

M. J. Todd, Semidefinite optimization, Acta Numerica, 10 (2001), 515-560.  doi: 10.1017/S0962492901000071.  Google Scholar

[18] A. W. Van der Vaart, Asymptotic Statistics, Cambridge University Press, New York, 1998.  doi: 10.1017/CBO9780511802256.  Google Scholar
Table 1.  $ \hat{\vartheta}_N $ in the case that the optimal solution is not unique
N Bias SD SE CP
100 -0.01575607 0.09802304 0.1026943 0.959
300 -0.008588234 0.05875263 0.05928791 0.947
800 -0.005730269 0.03494695 0.03630683 0.953
N Bias SD SE CP
100 -0.01575607 0.09802304 0.1026943 0.959
300 -0.008588234 0.05875263 0.05928791 0.947
800 -0.005730269 0.03494695 0.03630683 0.953
Table 2.  $ \hat{\vartheta}_N $ with the unique optimal solution
N Bias SD SE CP
100 -0.008575782 0.2752905 0.283196 0.954
300 0.000433069 0.1598366 0.1635033 0.953
800 0.002228357 0.1022441 0.1001249 0.948
N Bias SD SE CP
100 -0.008575782 0.2752905 0.283196 0.954
300 0.000433069 0.1598366 0.1635033 0.953
800 0.002228357 0.1022441 0.1001249 0.948
Table 3.  $ \hat{x}_N $ with the unique optimal solution
N x Bias SD SE CP
100 $ x_1 $ 0.001119686 0.1960365 0.2006396 0.956
$ x_2 $ -0.005239017 0.2040734 0.2006396 0.951
400 $ x_1 $ 0.003114901 0.09937129 0.1003198 0.948
$ x_2 $ 0.004845715 0.1005173 0.1003198 0.946
1000 $ x_1 $ -0.0001884376 0.06216153 0.06344781 0.943
$ x_2 $ 0.005075925 0.06360439 0.06344781 0.952
N x Bias SD SE CP
100 $ x_1 $ 0.001119686 0.1960365 0.2006396 0.956
$ x_2 $ -0.005239017 0.2040734 0.2006396 0.951
400 $ x_1 $ 0.003114901 0.09937129 0.1003198 0.948
$ x_2 $ 0.004845715 0.1005173 0.1003198 0.946
1000 $ x_1 $ -0.0001884376 0.06216153 0.06344781 0.943
$ x_2 $ 0.005075925 0.06360439 0.06344781 0.952
[1]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[2]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[3]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[6]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[7]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[8]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[9]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[10]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[11]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[12]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[13]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[14]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (107)
  • HTML views (650)
  • Cited by (0)

Other articles
by authors

[Back to Top]