
-
Previous Article
An improved total variation regularized RPCA for moving object detection with dynamic background
- JIMO Home
- This Issue
-
Next Article
A new interpretation of the progressive hedging algorithm for multistage stochastic minimization problems
Minimizing almost smooth control variation in nonlinear optimal control problems
1. | Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China |
2. | Department of Mathematics, Shanghai University, Baoshan 200444, Shanghai, China |
3. | Xingzhi College, Zhejiang Normal University, Jinhua 321004, Zhejiang, China |
In this paper, we consider an optimal control problem in which the control is almost smooth and the state and control are subject to terminal state constraints and continuous state and control inequality constraints. By introducing an extra set of differential equations for this almost smooth control, we transform this constrained optimal control problem into an equivalent problem involving both control function and system parameter vector as decision variables. Then, by the control parametrization technique and a time scaling transformation, the equivalent problem is approximated by a sequence of constrained optimal parameter selection problems, each of which is a finite dimensional optimization problem. For each of these constrained optimal parameter selection problems, a novel exact penalty function method is constructed by appending penalized constraint violations to the cost function. This gives rise to a sequence of unconstrained optimal parameter selection problems; and each of which can be solved by existing optimization algorithms or software packages. Finally, a practical container crane operation problem is solved, showing the effectiveness and applicability of the proposed approach.
References:
[1] |
N. U. Ahmed, Dynamic Systems and Control with Applications, Singapore: World Scientific, 2006.
doi: 10.1142/6262. |
[2] |
N. Banihashemi and C. Y. Kaya,
Inexact restoration and adaptive mesh refinement for optimal control, Journal of Industrial and Management Optimization, 10 (2014), 521-542.
doi: 10.3934/jimo.2014.10.521. |
[3] |
D. Chang and Z. Wu,
Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance, Journal of Industrial and Management Optimization, 11 (2015), 27-40.
doi: 10.3934/jimo.2015.11.27. |
[4] |
M. Gerdts and M. Kunkel,
A nonsmooth Newton's method for discretized optimal control problems with state and control constraints, Journal of Industrial and Management Optimization, 4 (2008), 247-270.
doi: 10.3934/jimo.2008.4.247. |
[5] |
L. G |
[6] |
Y. Han and Y. Gao,
Determining the viability for hybrid control systems on a region with piecewise smooth boundary, Numerical Algebra, Control and Optimization, 5 (2015), 1-9.
doi: 10.3934/naco.2015.5.1. |
[7] |
L. S. Jennings, M. E. Fisher, K. L. Teo, et al., MISER 3 Optimal Control Software: Theory and User Manual, version 3, University of Western Australia, 2004. Google Scholar |
[8] |
L. Jennings, C. Yu, B. Li, V. Rehbock, R. Loxton and F. Yang,
Visual miser: an efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2015), 781-810.
doi: 10.3934/jimo.2016.12.781. |
[9] |
J. Kaartinen, J. H |
[10] |
C. T. Lawrence and A. L. Tits,
A computationally efficient feasible sequential quadratic programming algorithm, SIAM Journal on Optimization, 11 (2006), 1092-1118.
doi: 10.1137/S1052623498344562. |
[11] |
H. W. J. Lee, K. L. Teo, V. Rehbock and L. S. Jennings,
Control parametrization enhancing technique for time optimal control problems, Dynamic Systems and Applications, 6 (1997), 243-261.
|
[12] |
B. Li, C. Xu, K. L. Teo and J. Chu,
Time optimal Zermelo's navigation problem with moving and fixed obstacles, Applied Mathematics and Computation, 224 (2013), 866-875.
doi: 10.1016/j.amc.2013.08.092. |
[13] |
Q. Lin, R. Loxton and K. L. Teo,
The control parameterization method for nonlinear optimal control: A surney, Journal of Industrial and Management Optimization, 10 (2014), 275-309.
doi: 10.3934/jimo.2014.10.275. |
[14] |
R. Loxton, Q. Lin, V. Rehbock and K. L. Teo,
Control parameterization for optimal control problems with continuous inequality constraints: New convergence results, Numerical Algebra, Control and Optimization, 2 (2012), 571-599.
doi: 10.3934/naco.2012.2.571. |
[15] |
K. S. Peterson and A. G. Stefanopoulou,
Extremum seeking control for soft landing of an electromechanical valve actuator, Automatica, 40 (2004), 1063-1069.
doi: 10.1016/j.automatica.2004.01.027. |
[16] |
V. Rehbock, Tracking Control and Optimal Control, PhD thesis, University of Western Australia, Perth, 1994. Google Scholar |
[17] |
Y. Sakawa and Y. Shindo, Optimal control of container cranes, Automatica, 18 (1982), 257-266. Google Scholar |
[18] |
K. Schittkowski,
NLPQL: A fortran subroutine solving constrained nonlinear programming problems, Ann. Oper. Res., 5 (1986), 485-500.
doi: 10.1007/BF02739235. |
[19] |
K. L. Teo and L. S. Jennings,
Nonlinear optimal control problems with continuous state inequality constraints, Journal of Optimization Theory and Application, 63 (1989), 1-22.
doi: 10.1007/BF00940727. |
[20] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Long-man Scientific and Technical, Essex, 1991. |
[21] |
W. X. Wang, Y. L. Shang, L. S. Zhang, et. al., Global minimization of non-smooth unconstrained problems with filled function, Optimization Letters, 7 (2013), 435-446.
doi: 10.1007/s11590-011-0427-7. |
[22] |
W. Xu, Z. G. Feng, J. W. Peng and K. F. C. Yiu,
Optimal switching for linear quadratic problem of switched systems in discrete time, Automatica, 78 (2017), 185-193.
doi: 10.1016/j.automatica.2016.12.002. |
[23] |
K. F. C. Yiu, Y. Liu and K. L. Teo,
A hybrid descent method for global optimization, Journal of Global Optimization, 28 (2004), 229-238.
doi: 10.1023/B:JOGO.0000015313.93974.b0. |
[24] |
C. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai,
A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization, 6 (2010), 895-910.
doi: 10.3934/jimo.2010.6.895. |
[25] |
C. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai,
On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial Management and Optimization, 8 (2012), 485-491.
doi: 10.3934/jimo.2012.8.485. |
show all references
References:
[1] |
N. U. Ahmed, Dynamic Systems and Control with Applications, Singapore: World Scientific, 2006.
doi: 10.1142/6262. |
[2] |
N. Banihashemi and C. Y. Kaya,
Inexact restoration and adaptive mesh refinement for optimal control, Journal of Industrial and Management Optimization, 10 (2014), 521-542.
doi: 10.3934/jimo.2014.10.521. |
[3] |
D. Chang and Z. Wu,
Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance, Journal of Industrial and Management Optimization, 11 (2015), 27-40.
doi: 10.3934/jimo.2015.11.27. |
[4] |
M. Gerdts and M. Kunkel,
A nonsmooth Newton's method for discretized optimal control problems with state and control constraints, Journal of Industrial and Management Optimization, 4 (2008), 247-270.
doi: 10.3934/jimo.2008.4.247. |
[5] |
L. G |
[6] |
Y. Han and Y. Gao,
Determining the viability for hybrid control systems on a region with piecewise smooth boundary, Numerical Algebra, Control and Optimization, 5 (2015), 1-9.
doi: 10.3934/naco.2015.5.1. |
[7] |
L. S. Jennings, M. E. Fisher, K. L. Teo, et al., MISER 3 Optimal Control Software: Theory and User Manual, version 3, University of Western Australia, 2004. Google Scholar |
[8] |
L. Jennings, C. Yu, B. Li, V. Rehbock, R. Loxton and F. Yang,
Visual miser: an efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2015), 781-810.
doi: 10.3934/jimo.2016.12.781. |
[9] |
J. Kaartinen, J. H |
[10] |
C. T. Lawrence and A. L. Tits,
A computationally efficient feasible sequential quadratic programming algorithm, SIAM Journal on Optimization, 11 (2006), 1092-1118.
doi: 10.1137/S1052623498344562. |
[11] |
H. W. J. Lee, K. L. Teo, V. Rehbock and L. S. Jennings,
Control parametrization enhancing technique for time optimal control problems, Dynamic Systems and Applications, 6 (1997), 243-261.
|
[12] |
B. Li, C. Xu, K. L. Teo and J. Chu,
Time optimal Zermelo's navigation problem with moving and fixed obstacles, Applied Mathematics and Computation, 224 (2013), 866-875.
doi: 10.1016/j.amc.2013.08.092. |
[13] |
Q. Lin, R. Loxton and K. L. Teo,
The control parameterization method for nonlinear optimal control: A surney, Journal of Industrial and Management Optimization, 10 (2014), 275-309.
doi: 10.3934/jimo.2014.10.275. |
[14] |
R. Loxton, Q. Lin, V. Rehbock and K. L. Teo,
Control parameterization for optimal control problems with continuous inequality constraints: New convergence results, Numerical Algebra, Control and Optimization, 2 (2012), 571-599.
doi: 10.3934/naco.2012.2.571. |
[15] |
K. S. Peterson and A. G. Stefanopoulou,
Extremum seeking control for soft landing of an electromechanical valve actuator, Automatica, 40 (2004), 1063-1069.
doi: 10.1016/j.automatica.2004.01.027. |
[16] |
V. Rehbock, Tracking Control and Optimal Control, PhD thesis, University of Western Australia, Perth, 1994. Google Scholar |
[17] |
Y. Sakawa and Y. Shindo, Optimal control of container cranes, Automatica, 18 (1982), 257-266. Google Scholar |
[18] |
K. Schittkowski,
NLPQL: A fortran subroutine solving constrained nonlinear programming problems, Ann. Oper. Res., 5 (1986), 485-500.
doi: 10.1007/BF02739235. |
[19] |
K. L. Teo and L. S. Jennings,
Nonlinear optimal control problems with continuous state inequality constraints, Journal of Optimization Theory and Application, 63 (1989), 1-22.
doi: 10.1007/BF00940727. |
[20] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Long-man Scientific and Technical, Essex, 1991. |
[21] |
W. X. Wang, Y. L. Shang, L. S. Zhang, et. al., Global minimization of non-smooth unconstrained problems with filled function, Optimization Letters, 7 (2013), 435-446.
doi: 10.1007/s11590-011-0427-7. |
[22] |
W. Xu, Z. G. Feng, J. W. Peng and K. F. C. Yiu,
Optimal switching for linear quadratic problem of switched systems in discrete time, Automatica, 78 (2017), 185-193.
doi: 10.1016/j.automatica.2016.12.002. |
[23] |
K. F. C. Yiu, Y. Liu and K. L. Teo,
A hybrid descent method for global optimization, Journal of Global Optimization, 28 (2004), 229-238.
doi: 10.1023/B:JOGO.0000015313.93974.b0. |
[24] |
C. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai,
A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization, 6 (2010), 895-910.
doi: 10.3934/jimo.2010.6.895. |
[25] |
C. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai,
On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial Management and Optimization, 8 (2012), 485-491.
doi: 10.3934/jimo.2012.8.485. |








[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[3] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[4] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[5] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[6] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[7] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[8] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[9] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[10] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[11] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[12] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[13] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[14] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[15] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[16] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]