
-
Previous Article
Supplier financing service decisions for a capital-constrained supply chain: Trade credit vs. combined credit financing
- JIMO Home
- This Issue
-
Next Article
An improved total variation regularized RPCA for moving object detection with dynamic background
Fast calibration of the Libor market model with stochastic volatility and displaced diffusion
1. | Université de Lyon, Université Lyon 1, Laboratoire de Science Actuarielle et Financière, ISFA, 50 avenue Tony Garnier, 69007, Lyon, France |
2. | Milliman R & D, 14 Avenue de la Grande Armée, 75017, Paris, France |
This paper demonstrates the efficiency of using Edgeworth and Gram-Charlier expansions in the calibration of the Libor Market Model with Stochastic Volatility and Displaced Diffusion (DD-SV-LMM). Our approach brings together two research areas; first, the results regarding the SV-LMM since the work of [
References:
[1] |
H. Albrecher, P. Mayer, W. Schoutens and J. Tistaert, The Little Heston Trap, KU Leuven Section of Statistics Technical Report, 2006. |
[2] |
L. Andersen and J. Andreasen,
Volatility skews and extensions of the LIBOR market model, Applied Mathematical Finance, 7 (2000), 1-32.
|
[3] |
R. Balieiro Filho and R. Rosenfeld,
Testing option pricing with the Edgeworth expansion, Physica A: Statistical Mechanics and its Applications, 344 (2004), 482-490.
|
[4] |
D. Bauer, A. Reuss and D. Singer,
On the calculation of the solvency capital requirement based on nested simulations, ASTIN Bulletin: The Journal of the IAA, 42 (2012), 453-499.
|
[5] |
J. Bouchaud and M. Potters, Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, Cambridge University Press, Cambridge, 2000.
![]() ![]() |
[6] |
D. Brigo and F. Mercurio, Interest Rate Models-Theory and Practice: With Smile, Inflation and Credit, Springer Finance. Springer-Verlag, Berlin, 2006. |
[7] |
P. Carr and D. Madan,
Option valuation using the fast Fourier transform, Journal of Computational Finance, 2 (1999), 61-73.
doi: 10.21314/JCF.1999.043. |
[8] |
J. Chateau, Valuing european put options under skewness and increasing [excess] kurtosis, Journal of Mathematical Finance, 4 (2014), Article ID: 45662, 17 pages.
doi: 10.4236/jmf.2014.43015. |
[9] |
B. Choy, T. Dun and E. Schlögl, Correlating market models, RISK, (2004), 124–129.
doi: 10.2139/ssrn.395640. |
[10] |
C. Corrado and T. Su,
Skewness and kurtosis in S & P 500 index returns implied by option prices, Journal of Financial Research, 19 (1996), 175-192.
doi: 10.1111/j.1475-6803.1996.tb00592.x. |
[11] |
C. Cuchiero, M. Keller-Ressel and J. Teichmann,
Polynomial processes and their applications to mathematical finance, Finance and Stochastics, 16 (2012), 711-740.
doi: 10.1007/s00780-012-0188-x. |
[12] |
L. De Leo, V. Vargas and S. Ciliberti and J. Bouchaud, We've walked a million miles for one of these smiles, preprint, 2012, arXiv: 1203.5703v2. |
[13] |
L. Devineau and S. Loisel, Construction d'un algorithme d'accélération de la méthode des "simulations dans les simulations" pour le calcul du capital économique Solvabilité Ⅱ, Bulletin Français d'Actuariat, 10 (2009), 188–221. |
[14] |
W. Feller, Introduction to the Theory of Probability and its Applications, John Wiley & Sons, Vol. 2, 1971. |
[15] |
D. Filipović and M. Larsson,
Polynomial diffusions and applications in finance, Finance and Stochastics, 20 (2016), 931-972.
doi: 10.1007/s00780-016-0304-4. |
[16] |
P. Hall, The Bootstrap and Edgeworth Expansion, Springer Series in Statistics. Springer-Verlag, New York, 1992.
doi: 10.1007/978-1-4612-4384-7. |
[17] |
S. Heston,
A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327. |
[18] |
S. Heston and A. Rossi,
A spanning series approach to options, The Review of Asset Pricing Studies, 6 (2016), 2-42.
|
[19] |
R. Jarrow and A. Rudd, Approximate option valuation for arbitrary stochastic processes, Financial Derivatives Pricing, (2008), 9–31.
doi: 10.1142/9789812819222_0001. |
[20] |
M. Joshi and R. Rebonato,
A stochastic-volatility, displaced-diffusion extension of the LIBOR market model, Quantitative Finance, 3 (2003), 458-469.
doi: 10.1088/1469-7688/3/6/305. |
[21] |
C. Kahl and P. Jäckel,
Not-so-complex logarithms in the Heston model, Wilmott Magazine, 19 (2005), 94-103.
|
[22] |
C. Necula, G. Drimus and W. Farkas, A general closed form option pricing formula, Swiss Finance Institute Research Paper, (2017), 15–53. |
[23] |
M. Potters, R. Cont and J. Bouchaud,
Financial markets as adaptive systems, EPL (Europhysics Letters), 41 (1998), 239-239.
doi: 10.1209/epl/i1998-00136-9. |
[24] |
E. Schlögl,
Option pricing where the underlying assets follow a Gram/Charlier density of arbitrary order, Journal of Economic Dynamics and Control, 37 (2013), 611-632.
doi: 10.1016/j.jedc.2012.10.001. |
[25] |
J. Vedani and L. Devineau, Solvency assessment within the ORSA framework: issues and quantitative methodologies, Bulletin Français d'Actuariat, 13 (2013), 35–71. |
[26] |
L. Wu and F. Zhang,
LIBOR market model with stochastic volatility, Journal of Industrial and Management Optimization, 2 (2006), 199-227.
doi: 10.3934/jimo.2006.2.199. |
show all references
References:
[1] |
H. Albrecher, P. Mayer, W. Schoutens and J. Tistaert, The Little Heston Trap, KU Leuven Section of Statistics Technical Report, 2006. |
[2] |
L. Andersen and J. Andreasen,
Volatility skews and extensions of the LIBOR market model, Applied Mathematical Finance, 7 (2000), 1-32.
|
[3] |
R. Balieiro Filho and R. Rosenfeld,
Testing option pricing with the Edgeworth expansion, Physica A: Statistical Mechanics and its Applications, 344 (2004), 482-490.
|
[4] |
D. Bauer, A. Reuss and D. Singer,
On the calculation of the solvency capital requirement based on nested simulations, ASTIN Bulletin: The Journal of the IAA, 42 (2012), 453-499.
|
[5] |
J. Bouchaud and M. Potters, Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, Cambridge University Press, Cambridge, 2000.
![]() ![]() |
[6] |
D. Brigo and F. Mercurio, Interest Rate Models-Theory and Practice: With Smile, Inflation and Credit, Springer Finance. Springer-Verlag, Berlin, 2006. |
[7] |
P. Carr and D. Madan,
Option valuation using the fast Fourier transform, Journal of Computational Finance, 2 (1999), 61-73.
doi: 10.21314/JCF.1999.043. |
[8] |
J. Chateau, Valuing european put options under skewness and increasing [excess] kurtosis, Journal of Mathematical Finance, 4 (2014), Article ID: 45662, 17 pages.
doi: 10.4236/jmf.2014.43015. |
[9] |
B. Choy, T. Dun and E. Schlögl, Correlating market models, RISK, (2004), 124–129.
doi: 10.2139/ssrn.395640. |
[10] |
C. Corrado and T. Su,
Skewness and kurtosis in S & P 500 index returns implied by option prices, Journal of Financial Research, 19 (1996), 175-192.
doi: 10.1111/j.1475-6803.1996.tb00592.x. |
[11] |
C. Cuchiero, M. Keller-Ressel and J. Teichmann,
Polynomial processes and their applications to mathematical finance, Finance and Stochastics, 16 (2012), 711-740.
doi: 10.1007/s00780-012-0188-x. |
[12] |
L. De Leo, V. Vargas and S. Ciliberti and J. Bouchaud, We've walked a million miles for one of these smiles, preprint, 2012, arXiv: 1203.5703v2. |
[13] |
L. Devineau and S. Loisel, Construction d'un algorithme d'accélération de la méthode des "simulations dans les simulations" pour le calcul du capital économique Solvabilité Ⅱ, Bulletin Français d'Actuariat, 10 (2009), 188–221. |
[14] |
W. Feller, Introduction to the Theory of Probability and its Applications, John Wiley & Sons, Vol. 2, 1971. |
[15] |
D. Filipović and M. Larsson,
Polynomial diffusions and applications in finance, Finance and Stochastics, 20 (2016), 931-972.
doi: 10.1007/s00780-016-0304-4. |
[16] |
P. Hall, The Bootstrap and Edgeworth Expansion, Springer Series in Statistics. Springer-Verlag, New York, 1992.
doi: 10.1007/978-1-4612-4384-7. |
[17] |
S. Heston,
A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327. |
[18] |
S. Heston and A. Rossi,
A spanning series approach to options, The Review of Asset Pricing Studies, 6 (2016), 2-42.
|
[19] |
R. Jarrow and A. Rudd, Approximate option valuation for arbitrary stochastic processes, Financial Derivatives Pricing, (2008), 9–31.
doi: 10.1142/9789812819222_0001. |
[20] |
M. Joshi and R. Rebonato,
A stochastic-volatility, displaced-diffusion extension of the LIBOR market model, Quantitative Finance, 3 (2003), 458-469.
doi: 10.1088/1469-7688/3/6/305. |
[21] |
C. Kahl and P. Jäckel,
Not-so-complex logarithms in the Heston model, Wilmott Magazine, 19 (2005), 94-103.
|
[22] |
C. Necula, G. Drimus and W. Farkas, A general closed form option pricing formula, Swiss Finance Institute Research Paper, (2017), 15–53. |
[23] |
M. Potters, R. Cont and J. Bouchaud,
Financial markets as adaptive systems, EPL (Europhysics Letters), 41 (1998), 239-239.
doi: 10.1209/epl/i1998-00136-9. |
[24] |
E. Schlögl,
Option pricing where the underlying assets follow a Gram/Charlier density of arbitrary order, Journal of Economic Dynamics and Control, 37 (2013), 611-632.
doi: 10.1016/j.jedc.2012.10.001. |
[25] |
J. Vedani and L. Devineau, Solvency assessment within the ORSA framework: issues and quantitative methodologies, Bulletin Français d'Actuariat, 13 (2013), 35–71. |
[26] |
L. Wu and F. Zhang,
LIBOR market model with stochastic volatility, Journal of Industrial and Management Optimization, 2 (2006), 199-227.
doi: 10.3934/jimo.2006.2.199. |












Method | Target function value |
Gram-Charlier (pricing) | 3.59E-05 |
Edgeworth (pricing) | 3.02E-05 |
Edgeworth (smile) | 3.00E-05 |
Heston | 2.03E-05 |
Method | Target function value |
Gram-Charlier (pricing) | 3.59E-05 |
Edgeworth (pricing) | 3.02E-05 |
Edgeworth (smile) | 3.00E-05 |
Heston | 2.03E-05 |
Method | CPU Time |
Heston | 425.1 |
Edgeworth | 8.2 |
Method | CPU Time |
Heston | 425.1 |
Edgeworth | 8.2 |
[1] |
Lixin Wu, Fan Zhang. LIBOR market model with stochastic volatility. Journal of Industrial and Management Optimization, 2006, 2 (2) : 199-227. doi: 10.3934/jimo.2006.2.199 |
[2] |
Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2077-2094. doi: 10.3934/jimo.2021057 |
[3] |
A. Procacci, Benedetto Scoppola. Convergent expansions for random cluster model with $q>0$ on infinite graphs. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1145-1178. doi: 10.3934/cpaa.2008.7.1145 |
[4] |
Lorella Fatone, Francesca Mariani, Maria Cristina Recchioni, Francesco Zirilli. Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model. Conference Publications, 2007, 2007 (Special) : 354-363. doi: 10.3934/proc.2007.2007.354 |
[5] |
Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137-160. doi: 10.3934/fmf.2021005 |
[6] |
Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515 |
[7] |
Nan Li, Song Wang. Pricing options on investment project expansions under commodity price uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (1) : 261-273. doi: 10.3934/jimo.2018042 |
[8] |
Lishang Jiang, Baojun Bian. The regularized implied local volatility equations -A new model to recover the volatility of underlying asset from observed market option price. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2017-2046. doi: 10.3934/dcdsb.2012.17.2017 |
[9] |
Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial and Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043 |
[10] |
Karma Dajani, Charlene Kalle. Random β-expansions with deleted digits. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 199-217. doi: 10.3934/dcds.2007.18.199 |
[11] |
Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072 |
[12] |
Bilgi Yilmaz, A. Sevtap Selcuk-Kestel. A stochastic approach to model housing markets: The US housing market case. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 481-492. doi: 10.3934/naco.2018030 |
[13] |
Karma Dajani, Cor Kraaikamp, Pierre Liardet. Ergodic properties of signed binary expansions. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 87-119. doi: 10.3934/dcds.2006.15.87 |
[14] |
Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389 |
[15] |
Rainer Buckdahn, Ingo Bulla, Jin Ma. Pathwise Taylor expansions for Itô random fields. Mathematical Control and Related Fields, 2011, 1 (4) : 437-468. doi: 10.3934/mcrf.2011.1.437 |
[16] |
Wenxiu Gong, Zuoliang Xu. An alternative tree method for calibration of the local volatility. Journal of Industrial and Management Optimization, 2022, 18 (1) : 137-156. doi: 10.3934/jimo.2020146 |
[17] |
Juan C. Cortés, Sandra E. Delgadillo-Alemán, Roberto A. Kú-Carrillo, Rafael J. Villanueva. Probabilistic analysis of a class of impulsive linear random differential equations forced by stochastic processes admitting Karhunen-Loève expansions. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022079 |
[18] |
Barbara Kaltenbacher. Periodic solutions and multiharmonic expansions for the Westervelt equation. Evolution Equations and Control Theory, 2021, 10 (2) : 229-247. doi: 10.3934/eect.2020063 |
[19] |
Chaolang Hu, Xiaoming He, Tao Lü. Euler-Maclaurin expansions and approximations of hypersingular integrals. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1355-1375. doi: 10.3934/dcdsb.2015.20.1355 |
[20] |
Mourad Bellassoued, Raymond Brummelhuis, Michel Cristofol, Éric Soccorsi. Stable reconstruction of the volatility in a regime-switching local-volatility model. Mathematical Control and Related Fields, 2020, 10 (1) : 189-215. doi: 10.3934/mcrf.2019036 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]