
-
Previous Article
Determining personnel promotion policies in HEI
- JIMO Home
- This Issue
-
Next Article
Supervised distance preserving projection using alternating direction method of multipliers
An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm
Department of Industrial Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran |
The aim of this research is to study the dynamic facility layout and job-shop scheduling problems, simultaneously. In fact, this paper intends to measure the synergy between these two problems. In this paper, a multi-objective mixed integer nonlinear programming model has been proposed where areas of departments are unequal. Using a new approach, this paper calculates the farness rating scores of departments beside their closeness rating scores. Another feature of this paper is the consideration of input and output points for each department, which is crucial for the establishment of practical facility layouts in the real world. In the scheduling problem, transportation delay between departments and machines' setup time are considered that affect the dynamic facility layout problem. This integrated problem is solved using a hybrid two-phase algorithm. In the first phase, this hybrid algorithm incorporates the non-dominated sorting genetic algorithm. The second phase also applies two local search algorithms. To increase the efficacy of the first phase, we have tuned the parameters of this phase using the Taguchi experimental design method. Then, we have randomly generated 20 instances of different sizes. The numerical results show that the second phase of the hybrid algorithm improves its first phase significantly. The results also demonstrate that the simultaneous optimization of those two problems decreases the mean flow time of jobs by about 10% as compared to their separate optimization.
References:
[1] |
A. D. Asl and K. Y. Wong,
Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization, Journal of Intelligent Manufacturing, 28 (2017), 1317-1336.
doi: 10.1007/s10845-015-1053-5. |
[2] |
C. Bierwirth and J. Kuhpfahl,
Extended GRASP for the job shop scheduling problem with total weighted tardiness objective, European Journal of Operational Research, 261 (2017), 835-848.
doi: 10.1016/j.ejor.2017.03.030. |
[3] |
H. X. Chen and H. C. Lau, A math-heuristic approach for integrated resource scheduling in a maritime logistics facility, 2011 IEEE International Conference on Industrial Engineering and Engineering Management, (2011).
doi: 10.1109/IEEM.2011.6117906. |
[4] |
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan,
A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE transactions on Evolutionary Computation, 6 (2002), 182-197.
doi: 10.1109/4235.996017. |
[5] |
S. Emami and A. S. Nookabadi,
Managing a new multi-objective model for the dynamic facility layout problem, The International Journal of Advanced Manufacturing Technology, 68 (2013), 2215-2228.
doi: 10.1007/s00170-013-4820-5. |
[6] |
X. Hao, M. Gen, L. Lin and G. A. Suer,
Effective multiobjective EDA for bi-criteria stochastic job-shop scheduling problem, Journal of Intelligent Manufacturing, 28 (2017), 833-845.
doi: 10.1007/s10845-014-1026-0. |
[7] |
M. Kaveh, V. M. Dalfard and S. Amiri,
A new intelligent algorithm for dynamic facility layout problem in state of fuzzy constraints, Neural Computing and Applications, 24 (2014), 1179-1190.
doi: 10.1007/s00521-013-1339-5. |
[8] |
N. Khilwani, R. Shankar and M. Tiwari,
Facility layout problem: An approach based on a group decision-making system and psychoclonal algorithm, International Journal of Production Research, 46 (2008), 895-927.
doi: 10.1080/00207540600943993. |
[9] |
R. Kolisch, A. Sprecher and A. Drexl,
Characterization and generation of a general class of resource-constrained project scheduling problems, Management Science, 41 (1995), 1693-1703.
doi: 10.1287/mnsc.41.10.1693. |
[10] |
J. Liu, D. Wang, K. He and Y. Xue,
Combining Wang-Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem, European Journal of Operational Research, 262 (2017), 1052-1063.
doi: 10.1016/j.ejor.2017.04.002. |
[11] |
G. Mavrotas,
Effective implementation of the $\epsilon$-constraint method in multi-objective mathematical programming problems, Applied Mathematics and Computation, 213 (2009), 455-465.
doi: 10.1016/j.amc.2009.03.037. |
[12] |
A. R. McKendall and A. Hakobyan,
Heuristics for the dynamic facility layout problem with unequal-area departments, European Journal of Operational Research, 201 (2010), 171-182.
doi: 10.1016/j.ejor.2009.02.028. |
[13] |
N. Mladenović and P. Hansen,
Variable neighborhood search, Computers & Operations Research, 11 (1997), 1097-1100.
doi: 10.1016/S0305-0548(97)00031-2. |
[14] |
A. Mohamadi, S. Ebrahimnejad and R. Tavakkoli-Moghaddam,
A novel two-stage approach for solving a bi-objective facility layout problem, International Journal of Operational Research, 31 (2018), 49-87.
doi: 10.1504/IJOR.2018.088557. |
[15] |
A. Moosavi and S. Ebrahimnejad,
Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization, Computers & Industrial Engineering, 120 (2018), 216-233.
doi: 10.1016/j.cie.2018.04.047. |
[16] |
N. Nekooghadirli, R. Tavakkoli-Moghaddam, V. R. Ghezavati and S. Javanmard,
Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-heuristics, Computers & Industrial Engineering, 76 (2014), 204-221.
doi: 10.1016/j.cie.2014.08.004. |
[17] |
M. Pirayesh and S. Poormoaied, Location and job shop scheduling problem in fuzzy environment, 5th Int. Conference of the Iranian Society of Operations Research, Azarbaijan, Iran, (2012). Google Scholar |
[18] |
H. Pourvaziri and H. Pierreval,
Dynamic facility layout problem based on open queuing network theory, European Journal of Operational Research, 259 (2017), 538-553.
doi: 10.1016/j.ejor.2016.11.011. |
[19] |
K. S. N. Ripon and J. Torresen,
Integrated job shop scheduling and layout planning: a hybrid evolutionary method for optimizing multiple objectives, Evolving Systems, 5 (2014), 121-132.
doi: 10.1007/s12530-013-9092-7. |
[20] |
K. S. N. Ripon, C. H. Tsang and S. Kwong, An evolutionary approach for solving the multi-objective job-shop scheduling problem, In Evolutionary Scheduling, 2007,165–195, Springer, Berlin, Heidelberg.
doi: 10.1007/978-3-540-48584-1_7. |
[21] |
M. H. Salmani, K. Eshghi and H. Neghabi,
A bi-objective MIP model for facility layout problem in uncertain environment, The International Journal of Advanced Manufacturing Technology, 81 (2015), 1563-1575.
doi: 10.1007/s00170-015-7290-0. |
[22] |
H. Samarghandi, P. Taabayan and M. Behroozi,
Metaheuristics for fuzzy dynamic facility layout problem with unequal area constraints and closeness ratings, The International Journal of Advanced Manufacturing Technology, 67 (2013), 2701-2715.
doi: 10.1007/s00170-012-4685-z. |
[23] |
J. Shahrabi, M. A. Adibi and M. Mahootchi,
A reinforcement learning approach to parameter estimation in dynamic job shop scheduling, Computers & Industrial Engineering, 110 (2017), 75-82.
doi: 10.1016/j.cie.2017.05.026. |
[24] |
A. Srinivasan, Integrating Block Layout Design and Location of Input and Output Points in Facility Layout Problems, M.Sc. thesis, Concordia University in Canada, 2014. Google Scholar |
[25] |
C. R. Vela, R. Varela and M. A. González,
Local search and genetic algorithm for the job shop scheduling problem with sequence dependent setup times, Journal of Heuristics, 16 (2010), 139-165.
doi: 10.1007/s10732-008-9094-y. |
[26] |
L. Wang, Combining facility layout redesign and dynamic routing for job-shop assembly operations, 2011 IEEE International Symposium on Assembly and Manufacturing, Tampere, Finland, (2011).
doi: 10.1109/ISAM.2011.5942302. |
[27] |
L. Wang, S. Keshavarzmanesh and H. Y. Feng, A hybrid approach for dynamic assembly shop floor layout, 2010 IEEE International Conference on Automation Science and Engineering, Toronto, ON, Canada, (2010).
doi: 10.1109/COASE.2010.5584219. |
[28] |
L. Wang, H. Wu, F. Tang and D. Z. Zheng, A hybrid quantum-inspired genetic algorithm for flow shop scheduling, International Conference on Intelligent Computing, Berlin, Heidelberg, (2005), 636–644.
doi: 10.1007/11538356_66. |
[29] |
C. L. Yang, S. P. Chuang and T. S. Hsu,
A genetic algorithm for dynamic facility planning in job shop manufacturing, The International Journal of Advanced Manufacturing Technology, 52 (2011), 303-309.
doi: 10.1007/s00170-010-2733-0. |
show all references
References:
[1] |
A. D. Asl and K. Y. Wong,
Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization, Journal of Intelligent Manufacturing, 28 (2017), 1317-1336.
doi: 10.1007/s10845-015-1053-5. |
[2] |
C. Bierwirth and J. Kuhpfahl,
Extended GRASP for the job shop scheduling problem with total weighted tardiness objective, European Journal of Operational Research, 261 (2017), 835-848.
doi: 10.1016/j.ejor.2017.03.030. |
[3] |
H. X. Chen and H. C. Lau, A math-heuristic approach for integrated resource scheduling in a maritime logistics facility, 2011 IEEE International Conference on Industrial Engineering and Engineering Management, (2011).
doi: 10.1109/IEEM.2011.6117906. |
[4] |
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan,
A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE transactions on Evolutionary Computation, 6 (2002), 182-197.
doi: 10.1109/4235.996017. |
[5] |
S. Emami and A. S. Nookabadi,
Managing a new multi-objective model for the dynamic facility layout problem, The International Journal of Advanced Manufacturing Technology, 68 (2013), 2215-2228.
doi: 10.1007/s00170-013-4820-5. |
[6] |
X. Hao, M. Gen, L. Lin and G. A. Suer,
Effective multiobjective EDA for bi-criteria stochastic job-shop scheduling problem, Journal of Intelligent Manufacturing, 28 (2017), 833-845.
doi: 10.1007/s10845-014-1026-0. |
[7] |
M. Kaveh, V. M. Dalfard and S. Amiri,
A new intelligent algorithm for dynamic facility layout problem in state of fuzzy constraints, Neural Computing and Applications, 24 (2014), 1179-1190.
doi: 10.1007/s00521-013-1339-5. |
[8] |
N. Khilwani, R. Shankar and M. Tiwari,
Facility layout problem: An approach based on a group decision-making system and psychoclonal algorithm, International Journal of Production Research, 46 (2008), 895-927.
doi: 10.1080/00207540600943993. |
[9] |
R. Kolisch, A. Sprecher and A. Drexl,
Characterization and generation of a general class of resource-constrained project scheduling problems, Management Science, 41 (1995), 1693-1703.
doi: 10.1287/mnsc.41.10.1693. |
[10] |
J. Liu, D. Wang, K. He and Y. Xue,
Combining Wang-Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem, European Journal of Operational Research, 262 (2017), 1052-1063.
doi: 10.1016/j.ejor.2017.04.002. |
[11] |
G. Mavrotas,
Effective implementation of the $\epsilon$-constraint method in multi-objective mathematical programming problems, Applied Mathematics and Computation, 213 (2009), 455-465.
doi: 10.1016/j.amc.2009.03.037. |
[12] |
A. R. McKendall and A. Hakobyan,
Heuristics for the dynamic facility layout problem with unequal-area departments, European Journal of Operational Research, 201 (2010), 171-182.
doi: 10.1016/j.ejor.2009.02.028. |
[13] |
N. Mladenović and P. Hansen,
Variable neighborhood search, Computers & Operations Research, 11 (1997), 1097-1100.
doi: 10.1016/S0305-0548(97)00031-2. |
[14] |
A. Mohamadi, S. Ebrahimnejad and R. Tavakkoli-Moghaddam,
A novel two-stage approach for solving a bi-objective facility layout problem, International Journal of Operational Research, 31 (2018), 49-87.
doi: 10.1504/IJOR.2018.088557. |
[15] |
A. Moosavi and S. Ebrahimnejad,
Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization, Computers & Industrial Engineering, 120 (2018), 216-233.
doi: 10.1016/j.cie.2018.04.047. |
[16] |
N. Nekooghadirli, R. Tavakkoli-Moghaddam, V. R. Ghezavati and S. Javanmard,
Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-heuristics, Computers & Industrial Engineering, 76 (2014), 204-221.
doi: 10.1016/j.cie.2014.08.004. |
[17] |
M. Pirayesh and S. Poormoaied, Location and job shop scheduling problem in fuzzy environment, 5th Int. Conference of the Iranian Society of Operations Research, Azarbaijan, Iran, (2012). Google Scholar |
[18] |
H. Pourvaziri and H. Pierreval,
Dynamic facility layout problem based on open queuing network theory, European Journal of Operational Research, 259 (2017), 538-553.
doi: 10.1016/j.ejor.2016.11.011. |
[19] |
K. S. N. Ripon and J. Torresen,
Integrated job shop scheduling and layout planning: a hybrid evolutionary method for optimizing multiple objectives, Evolving Systems, 5 (2014), 121-132.
doi: 10.1007/s12530-013-9092-7. |
[20] |
K. S. N. Ripon, C. H. Tsang and S. Kwong, An evolutionary approach for solving the multi-objective job-shop scheduling problem, In Evolutionary Scheduling, 2007,165–195, Springer, Berlin, Heidelberg.
doi: 10.1007/978-3-540-48584-1_7. |
[21] |
M. H. Salmani, K. Eshghi and H. Neghabi,
A bi-objective MIP model for facility layout problem in uncertain environment, The International Journal of Advanced Manufacturing Technology, 81 (2015), 1563-1575.
doi: 10.1007/s00170-015-7290-0. |
[22] |
H. Samarghandi, P. Taabayan and M. Behroozi,
Metaheuristics for fuzzy dynamic facility layout problem with unequal area constraints and closeness ratings, The International Journal of Advanced Manufacturing Technology, 67 (2013), 2701-2715.
doi: 10.1007/s00170-012-4685-z. |
[23] |
J. Shahrabi, M. A. Adibi and M. Mahootchi,
A reinforcement learning approach to parameter estimation in dynamic job shop scheduling, Computers & Industrial Engineering, 110 (2017), 75-82.
doi: 10.1016/j.cie.2017.05.026. |
[24] |
A. Srinivasan, Integrating Block Layout Design and Location of Input and Output Points in Facility Layout Problems, M.Sc. thesis, Concordia University in Canada, 2014. Google Scholar |
[25] |
C. R. Vela, R. Varela and M. A. González,
Local search and genetic algorithm for the job shop scheduling problem with sequence dependent setup times, Journal of Heuristics, 16 (2010), 139-165.
doi: 10.1007/s10732-008-9094-y. |
[26] |
L. Wang, Combining facility layout redesign and dynamic routing for job-shop assembly operations, 2011 IEEE International Symposium on Assembly and Manufacturing, Tampere, Finland, (2011).
doi: 10.1109/ISAM.2011.5942302. |
[27] |
L. Wang, S. Keshavarzmanesh and H. Y. Feng, A hybrid approach for dynamic assembly shop floor layout, 2010 IEEE International Conference on Automation Science and Engineering, Toronto, ON, Canada, (2010).
doi: 10.1109/COASE.2010.5584219. |
[28] |
L. Wang, H. Wu, F. Tang and D. Z. Zheng, A hybrid quantum-inspired genetic algorithm for flow shop scheduling, International Conference on Intelligent Computing, Berlin, Heidelberg, (2005), 636–644.
doi: 10.1007/11538356_66. |
[29] |
C. L. Yang, S. P. Chuang and T. S. Hsu,
A genetic algorithm for dynamic facility planning in job shop manufacturing, The International Journal of Advanced Manufacturing Technology, 52 (2011), 303-309.
doi: 10.1007/s00170-010-2733-0. |












Problem | Rows | Features | Rows | Objectives |
FLP | [F1] | Inequality of departments | [O1] | Material handling cost |
[F2] | Input and output for departments | [O2] | Rearrangement cost of departments | |
[F3] | Multiple periods | [O3] | Desirability of closeness rating scores | |
[F4] | Continuous Optimization | [O4] | PUS | |
[O5] | Work in process | |||
JSS | [F5] | Setup time | [O6] | Makespan |
[F6] | Transportation delay time | [O7] | Mean Flow Time (MFT) | |
[F7] | Multiple periods | [O8] | Earliness | |
[F8] | Due date of jobs | [O9] | Lateness | |
[F9] | Machine breakdown |
Problem | Rows | Features | Rows | Objectives |
FLP | [F1] | Inequality of departments | [O1] | Material handling cost |
[F2] | Input and output for departments | [O2] | Rearrangement cost of departments | |
[F3] | Multiple periods | [O3] | Desirability of closeness rating scores | |
[F4] | Continuous Optimization | [O4] | PUS | |
[O5] | Work in process | |||
JSS | [F5] | Setup time | [O6] | Makespan |
[F6] | Transportation delay time | [O7] | Mean Flow Time (MFT) | |
[F7] | Multiple periods | [O8] | Earliness | |
[F8] | Due date of jobs | [O9] | Lateness | |
[F9] | Machine breakdown |
Size of | Instance | No. of | No. of | No. of |
instances | (No. of periods) | departments | machines | jobs |
Small | 1 (2), 11 (3) | 3 | 3 | 3 |
2 (2), 12 (3) | 4 | 5 | 5 | |
3 (2), 13 (3) | 5 | 7 | 7 | |
Medium | 4 (2), 14 (3) | 6 | 9 | 9 |
5 (2), 15 (3) | 8 | 11 | 11 | |
6 (2), 16 (3) | 10 | 13 | 13 | |
Large-scale | 7 (2), 17 (3) | 12 | 16 | 16 |
8 (2), 18 (3) | 14 | 19 | 19 | |
9 (2), 19 (3) | 16 | 21 | 21 | |
10 (2), 20 (3) | 18 | 23 | 23 |
Size of | Instance | No. of | No. of | No. of |
instances | (No. of periods) | departments | machines | jobs |
Small | 1 (2), 11 (3) | 3 | 3 | 3 |
2 (2), 12 (3) | 4 | 5 | 5 | |
3 (2), 13 (3) | 5 | 7 | 7 | |
Medium | 4 (2), 14 (3) | 6 | 9 | 9 |
5 (2), 15 (3) | 8 | 11 | 11 | |
6 (2), 16 (3) | 10 | 13 | 13 | |
Large-scale | 7 (2), 17 (3) | 12 | 16 | 16 |
8 (2), 18 (3) | 14 | 19 | 19 | |
9 (2), 19 (3) | 16 | 21 | 21 | |
10 (2), 20 (3) | 18 | 23 | 23 |
![]() |
1 (*10) | 2 (*10) | 3 (*10) |
1 | T(250,280,300) | T(40, 50, 60) | T(40, 50, 60) |
2 | T(70, 75, 90) | T(350,400,430) | T(110,125,135) |
3 | N(5, 56) | N(2, 55) | N(20,550) |
4 | N(4, 40) | N(4, 50) | N(4, 70) |
![]() |
1 (*10) | 2 (*10) | 3 (*10) |
1 | T(250,280,300) | T(40, 50, 60) | T(40, 50, 60) |
2 | T(70, 75, 90) | T(350,400,430) | T(110,125,135) |
3 | N(5, 56) | N(2, 55) | N(20,550) |
4 | N(4, 40) | N(4, 50) | N(4, 70) |
Parameter | Level of parameters | ||||||||
Small size | Medium size | Large-scale | |||||||
I | II | III | I | II | III | I | II | III | |
Iteration | 60 | 80 | 100 | 80 | 100 | 120 | 100 | 150 | 200 |
Initial population | 10 | 20 | 30 | 30 | 40 | 50 | 80 | 100 | 120 |
0.7 | 0.8 | 0.9 | 0.7 | 0.8 | 0.9 | 0.7 | 0.8 | 0.9 | |
0.1 | 0.2 | 0.3 | 0.1 | 0.2 | 0.3 | 0.1 | 0.2 | 0.3 |
Parameter | Level of parameters | ||||||||
Small size | Medium size | Large-scale | |||||||
I | II | III | I | II | III | I | II | III | |
Iteration | 60 | 80 | 100 | 80 | 100 | 120 | 100 | 150 | 200 |
Initial population | 10 | 20 | 30 | 30 | 40 | 50 | 80 | 100 | 120 |
0.7 | 0.8 | 0.9 | 0.7 | 0.8 | 0.9 | 0.7 | 0.8 | 0.9 | |
0.1 | 0.2 | 0.3 | 0.1 | 0.2 | 0.3 | 0.1 | 0.2 | 0.3 |
Parameter | Size of instances | ||
Small | Medium | Large-scale | |
Iteration | 60 | 100 | 150 |
Initial population | 20 | 30 | 100 |
0.7 | 0.7 | 0.8 | |
0.2 | 0.3 | 0.3 |
Parameter | Size of instances | ||
Small | Medium | Large-scale | |
Iteration | 60 | 100 | 150 |
Initial population | 20 | 30 | 100 |
0.7 | 0.7 | 0.8 | |
0.2 | 0.3 | 0.3 |
![]() |
4 | 7 | 10 | 13 | 16 | 19 |
Traditional method |
35.2 | 48.8 | 57.3 | 34 | 55.6 | 51.6 |
Proposed method |
38.9 | 41.1 | 49.8 | 35.3 | 42 | 37.6 |
Gap |
-10.6 | 15.9 | 13.1 | -3.8 | 24.3 | 27 |
![]() |
4 | 7 | 10 | 13 | 16 | 19 |
Traditional method |
35.2 | 48.8 | 57.3 | 34 | 55.6 | 51.6 |
Proposed method |
38.9 | 41.1 | 49.8 | 35.3 | 42 | 37.6 |
Gap |
-10.6 | 15.9 | 13.1 | -3.8 | 24.3 | 27 |
Row | Baron solver | Hybrid algorithm | ||||||
Obj. 1 | Obj. 2 | Obj. 3 (%) | Obj. 4 | Obj. 1 | Obj. 2 | Obj. 3 (%) | Obj. 4 | |
1 | 596,320.6 | 0.2777 | 0.68 | 23.3751 | 223,500 | 0.58 | 24.9 | 22.851 |
2 | 441,669.9 | 0 | 3.33 | 22.1017 | 224,616.6 | 0.57 | 24.7 | 22.798 |
3 | 482,948.3 | 0.2148 | 1.70 | 22.2769 | 236,688.6 | 0.555 | 24.2 | 22.764 |
4 | 227,695.7 | 0.2838 | 20.44 | 21.5836 | 249,431.5 | 0.54 | 23.1 | 22.693 |
5 | 269,847.4 | 0.2532 | 20.93 | 21.3166 | 223,500 | 0.6 | 25.7 | 21.854 |
6 | 227,756.6 | 0.28528 | 20.44 | 21.5832 | 375,100 | 0.3 | 25.3 | 22.903 |
7 | 351,791.2 | 0.40051 | 9.68 | 21.9565 | 223,500 | 0.6 | 20.3 | 22.379 |
8 | 268,928.5 | 0.25386 | 20.76 | 21.3141 | 375,100 | 0.45 | 20.6 | 22.903 |
9 | 228,763.6 | 0.2868 | 20.45 | 21.5826 | 300,388.8 | 0.494 | 20.6 | 21.854 |
10 | 228,571.3 | 0.2871 | 20.38 | 21.5841 | 379,873.8 | 0 | 20.6 | 21.64 |
11 | 360,249.7 | 0.1717 | 40.14 | 22.5674 | 223,500 | 0.786 | 20 | 21.645 |
Row | Baron solver | Hybrid algorithm | ||||||
Obj. 1 | Obj. 2 | Obj. 3 (%) | Obj. 4 | Obj. 1 | Obj. 2 | Obj. 3 (%) | Obj. 4 | |
1 | 596,320.6 | 0.2777 | 0.68 | 23.3751 | 223,500 | 0.58 | 24.9 | 22.851 |
2 | 441,669.9 | 0 | 3.33 | 22.1017 | 224,616.6 | 0.57 | 24.7 | 22.798 |
3 | 482,948.3 | 0.2148 | 1.70 | 22.2769 | 236,688.6 | 0.555 | 24.2 | 22.764 |
4 | 227,695.7 | 0.2838 | 20.44 | 21.5836 | 249,431.5 | 0.54 | 23.1 | 22.693 |
5 | 269,847.4 | 0.2532 | 20.93 | 21.3166 | 223,500 | 0.6 | 25.7 | 21.854 |
6 | 227,756.6 | 0.28528 | 20.44 | 21.5832 | 375,100 | 0.3 | 25.3 | 22.903 |
7 | 351,791.2 | 0.40051 | 9.68 | 21.9565 | 223,500 | 0.6 | 20.3 | 22.379 |
8 | 268,928.5 | 0.25386 | 20.76 | 21.3141 | 375,100 | 0.45 | 20.6 | 22.903 |
9 | 228,763.6 | 0.2868 | 20.45 | 21.5826 | 300,388.8 | 0.494 | 20.6 | 21.854 |
10 | 228,571.3 | 0.2871 | 20.38 | 21.5841 | 379,873.8 | 0 | 20.6 | 21.64 |
11 | 360,249.7 | 0.1717 | 40.14 | 22.5674 | 223,500 | 0.786 | 20 | 21.645 |
Instance | QM | MID | DM | SM | ||||||||
Sep. | Sim. | Sep. | Sim. | Sep. | Sim. | Sep. | Sim. | |||||
1 | 0.600 | 1 | 0.400 | 0.975 | 0.781 | 0.194 | 1.310 | 1.933 | 0.623 | 0.655 | 1.151 | -0.496 |
2 | 0.600 | 1 | 0.400 | 1.010 | 0.586 | 0.424 | 1.906 | 0.739 | -1.167 | 1.454 | 1.730 | -0.276 |
3 | 0.500 | 0.750 | 0.250 | 0.994 | 1.269 | -0.275 | 1.213 | 1.967 | 0.754 | 0.464 | 0.548 | -0.084 |
4 | 0.555 | 0.888 | 0.333 | 1.241 | 1.141 | 0.100 | 1.337 | 1.479 | 0.142 | 0.610 | 0.861 | -0.251 |
5 | 0.500 | 1 | 0.500 | 1.902 | 1.432 | 0.470 | 1.666 | 1.479 | -0.187 | 1.037 | 1.524 | -0.487 |
6 | 0.428 | 0.714 | 0.286 | 1.342 | 1.286 | 0.056 | 1.555 | 1.294 | -0.261 | 0.504 | 0.677 | -0.173 |
7 | 0.875 | 0.375 | -0.500 | 1.107 | 1.287 | -0.180 | 1.576 | 1.461 | -0.115 | 0.415 | 0.985 | -0.570 |
8 | 0.500 | 1 | 0.500 | 0.893 | 0.624 | 0.269 | 1.324 | 1.636 | 0.312 | 0.602 | 0.854 | -0.252 |
9 | 0.600 | 1 | 0.400 | 1.365 | 1.017 | 0.348 | 1.521 | 1.241 | -0.280 | 0.439 | 0.950 | -0.511 |
10 | 0.555 | 0.875 | 0.320 | 1.698 | 1.205 | 0.493 | 1.722 | 1.625 | -0.097 | 0.520 | 0.991 | -0.471 |
11 | 0.666 | 1 | 0.334 | 1.031 | 0.743 | 0.288 | 0.883 | 1.397 | 0.514 | 0.999 | 1.986 | -0.987 |
12 | 1 | 1 | 0 | 0.863 | 1.041 | -0.178 | 1.068 | 0.883 | -0.185 | 0.080 | 1.278 | -1.198 |
13 | 0.500 | 1 | 0.500 | 2.631 | 2.115 | 0.516 | 1.536 | 1.625 | 0.089 | 0.268 | 0.790 | -0.522 |
14 | 0.666 | 1 | 0.334 | 1.656 | 1.328 | 0.328 | 1.658 | 1.031 | -0.627 | 0.771 | 0.790 | -0.019 |
15 | 0.666 | 0.666 | 0 | 1.246 | 1.101 | 0.145 | 1.521 | 1.677 | 0.156 | 0.950 | 0.721 | 0.229 |
16 | 0.666 | 0.500 | -0.166 | 1.462 | 1.482 | -0.020 | 1.409 | 1.324 | -0.085 | 0.537 | 0.746 | -0.209 |
17 | 0.666 | 0.666 | 0 | 0.877 | 1.077 | -0.200 | 1.624 | 1.359 | -0.265 | 0.357 | 0.472 | -0.115 |
18 | 0.500 | 0.777 | 0.277 | 0.645 | 0.639 | 0.006 | 1.446 | 1.365 | -0.081 | 0.698 | 0.685 | 0.013 |
19 | 0.833 | 1 | 0.167 | 1.791 | 1.450 | 0.341 | 1.552 | 1.701 | 0.149 | 0.578 | 0.773 | -0.195 |
20 | 0.666 | 0.888 | 0.222 | 1.308 | 0.812 | 0.496 | 1.291 | 1.105 | -0.186 | 0.661 | 0.808 | -0.147 |
Average | 0.626 | 0.854 | 0.227 | 1.301 | 1.120 | 0.181 | 1.455 | 1.415 | -0.039 | 0.629 | 0.960 | -0.336 |
Gap (%) | 36.42 | 13.91 | -2.74 | -52.62 | ||||||||
Sep: Separate Optimization and Sim: Simultaneous Optimization |
Instance | QM | MID | DM | SM | ||||||||
Sep. | Sim. | Sep. | Sim. | Sep. | Sim. | Sep. | Sim. | |||||
1 | 0.600 | 1 | 0.400 | 0.975 | 0.781 | 0.194 | 1.310 | 1.933 | 0.623 | 0.655 | 1.151 | -0.496 |
2 | 0.600 | 1 | 0.400 | 1.010 | 0.586 | 0.424 | 1.906 | 0.739 | -1.167 | 1.454 | 1.730 | -0.276 |
3 | 0.500 | 0.750 | 0.250 | 0.994 | 1.269 | -0.275 | 1.213 | 1.967 | 0.754 | 0.464 | 0.548 | -0.084 |
4 | 0.555 | 0.888 | 0.333 | 1.241 | 1.141 | 0.100 | 1.337 | 1.479 | 0.142 | 0.610 | 0.861 | -0.251 |
5 | 0.500 | 1 | 0.500 | 1.902 | 1.432 | 0.470 | 1.666 | 1.479 | -0.187 | 1.037 | 1.524 | -0.487 |
6 | 0.428 | 0.714 | 0.286 | 1.342 | 1.286 | 0.056 | 1.555 | 1.294 | -0.261 | 0.504 | 0.677 | -0.173 |
7 | 0.875 | 0.375 | -0.500 | 1.107 | 1.287 | -0.180 | 1.576 | 1.461 | -0.115 | 0.415 | 0.985 | -0.570 |
8 | 0.500 | 1 | 0.500 | 0.893 | 0.624 | 0.269 | 1.324 | 1.636 | 0.312 | 0.602 | 0.854 | -0.252 |
9 | 0.600 | 1 | 0.400 | 1.365 | 1.017 | 0.348 | 1.521 | 1.241 | -0.280 | 0.439 | 0.950 | -0.511 |
10 | 0.555 | 0.875 | 0.320 | 1.698 | 1.205 | 0.493 | 1.722 | 1.625 | -0.097 | 0.520 | 0.991 | -0.471 |
11 | 0.666 | 1 | 0.334 | 1.031 | 0.743 | 0.288 | 0.883 | 1.397 | 0.514 | 0.999 | 1.986 | -0.987 |
12 | 1 | 1 | 0 | 0.863 | 1.041 | -0.178 | 1.068 | 0.883 | -0.185 | 0.080 | 1.278 | -1.198 |
13 | 0.500 | 1 | 0.500 | 2.631 | 2.115 | 0.516 | 1.536 | 1.625 | 0.089 | 0.268 | 0.790 | -0.522 |
14 | 0.666 | 1 | 0.334 | 1.656 | 1.328 | 0.328 | 1.658 | 1.031 | -0.627 | 0.771 | 0.790 | -0.019 |
15 | 0.666 | 0.666 | 0 | 1.246 | 1.101 | 0.145 | 1.521 | 1.677 | 0.156 | 0.950 | 0.721 | 0.229 |
16 | 0.666 | 0.500 | -0.166 | 1.462 | 1.482 | -0.020 | 1.409 | 1.324 | -0.085 | 0.537 | 0.746 | -0.209 |
17 | 0.666 | 0.666 | 0 | 0.877 | 1.077 | -0.200 | 1.624 | 1.359 | -0.265 | 0.357 | 0.472 | -0.115 |
18 | 0.500 | 0.777 | 0.277 | 0.645 | 0.639 | 0.006 | 1.446 | 1.365 | -0.081 | 0.698 | 0.685 | 0.013 |
19 | 0.833 | 1 | 0.167 | 1.791 | 1.450 | 0.341 | 1.552 | 1.701 | 0.149 | 0.578 | 0.773 | -0.195 |
20 | 0.666 | 0.888 | 0.222 | 1.308 | 0.812 | 0.496 | 1.291 | 1.105 | -0.186 | 0.661 | 0.808 | -0.147 |
Average | 0.626 | 0.854 | 0.227 | 1.301 | 1.120 | 0.181 | 1.455 | 1.415 | -0.039 | 0.629 | 0.960 | -0.336 |
Gap (%) | 36.42 | 13.91 | -2.74 | -52.62 | ||||||||
Sep: Separate Optimization and Sim: Simultaneous Optimization |
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Separate | 23.2 | 42.2 | 80.1 | 94.7 | 124 | 185 | 238.3 | 253.8 | 295.7 | 317.6 |
Simultaneous | 22.3 | 40.6 | 74.2 | 90.3 | 118.9 | 161.8 | 211.1 | 212.7 | 250.1 | 265.6 |
Gap (%) | 3.7 | 3.9 | 7.4 | 4.6 | 4.1 | 12.5 | 11.4 | 16.2 | 15.4 | 16.4 |
![]() |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Separate | 23.1 | 42.3 | 73 | 94.6 | 126.6 | 197.4 | 245.6 | 266.4 | 299.9 | 324.5 |
Simultaneous | 21.8 | 41 | 70.6 | 70.6 | 118.8 | 163.6 | 212.9 | 223.7 | 254.7 | 285.6 |
Gap (%) | 5.5 | 3.1 | 3.3 | 25.4 | 6.1 | 17.1 | 13.3 | 16 | 15 | 11.98 |
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Separate | 23.2 | 42.2 | 80.1 | 94.7 | 124 | 185 | 238.3 | 253.8 | 295.7 | 317.6 |
Simultaneous | 22.3 | 40.6 | 74.2 | 90.3 | 118.9 | 161.8 | 211.1 | 212.7 | 250.1 | 265.6 |
Gap (%) | 3.7 | 3.9 | 7.4 | 4.6 | 4.1 | 12.5 | 11.4 | 16.2 | 15.4 | 16.4 |
![]() |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Separate | 23.1 | 42.3 | 73 | 94.6 | 126.6 | 197.4 | 245.6 | 266.4 | 299.9 | 324.5 |
Simultaneous | 21.8 | 41 | 70.6 | 70.6 | 118.8 | 163.6 | 212.9 | 223.7 | 254.7 | 285.6 |
Gap (%) | 5.5 | 3.1 | 3.3 | 25.4 | 6.1 | 17.1 | 13.3 | 16 | 15 | 11.98 |
[1] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[2] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[3] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[4] |
Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021005 |
[5] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[6] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[7] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[8] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[9] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[10] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[11] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[12] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[13] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[14] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[15] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
[16] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[17] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[18] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[19] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[20] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]