
-
Previous Article
Higher-order symmetric duality for multiobjective programming with cone constraints
- JIMO Home
- This Issue
-
Next Article
Determining personnel promotion policies in HEI
CVaR-based robust models for portfolio selection
1. | School of Mathematical Sciences, Chongqing Normal University, No. 12 Tianchen Road, Shapingba, Chongqing 400047, China |
2. | Department of Mathematics and Statistics, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia |
3. | College of Electrical Engineering and Information Technology, Sichuan University, No. 24 Yihuan Road, Chengdu, Sichuan 610065, China |
4. | School of Science, Hebei University of Technology, No. 5340 Xiping Road, Beichen, Tianjin 300130, China |
This study relaxes the distributional assumption of the return of the risky asset, to arrive at the optimal portfolio. Studies of portfolio selection models have typically assumed that stock returns conform to the normal distribution. The application of robust optimization techniques means that only the historical mean and variance of asset returns are required instead of distributional information. We show that the method results in an optimal portfolio that has comparable return and yet equivalent risk, to one that assumes normality of asset returns.
References:
[1] |
X. Q. Cai, K. L. Teo, X. Q. Yang and X. Y.Zhou,
Portfolio optimization under a minimax rule, Management Science, 46 (2000), 957-972.
doi: 10.1287/mnsc.46.7.957.12039. |
[2] |
W. Chen, M. Sim, J. Sun and C. Teo,
From CVaR to uncertain set: Implications in joint chance-constrained optimization, Operations Research, 58 (2010), 470-485.
doi: 10.1287/opre.1090.0712. |
[3] |
M. C. Chiu, H. Y. Wong and D. Li,
Roy's safety-first portfolio principle in financial risk management of disastrous events, Risk Analysis, 32 (2012), 1856-1872.
doi: 10.1111/j.1539-6924.2011.01751.x. |
[4] |
X. T. Deng, Z. F. Li and S. Y. Wang,
A minimax portfolio selection strategy with equilibrium, European Journal of Operational Research, 166 (2005), 278-292.
doi: 10.1016/j.ejor.2004.01.040. |
[5] |
H. Konno,
Piecewise linear risk function and portfolio optimization, Journal of the Operations Research Society of Japan, 33 (1990), 139-156.
doi: 10.15807/jorsj.33.139. |
[6] |
H. Konno and K. Suzuki,
A mean-variance-skewness optimization model, Journal of the Operations Research Society of Japan, 38 (1995), 137-187.
doi: 10.15807/jorsj.38.173. |
[7] |
H. Konno and H. Yamazaki,
Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 501-623.
doi: 10.1287/mnsc.37.5.519. |
[8] |
B. Li, J. Sun, K. L. Teo, C. J. Yu and M. Zhang, A distributionally robust approach to a class of three-stage stochastic linear programs, Pacific Journal of Optimization, to appear. |
[9] |
B. Li, J. Sun, H. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400. Google Scholar |
[10] |
B. Li, Q. Xun, J. Sun, K. L. Teo and C. J. Yu,
A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.
doi: 10.1016/j.apm.2017.11.039. |
[11] |
B. Li, Y. Rong, J. Sun and K. L. Teo.,
A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109.
doi: 10.1109/LSP.2017.2773601. |
[12] |
B. Li, Y. Rong, J. Sun and K. L. Teo,
A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.
doi: 10.1109/TWC.2016.2625246. |
[13] |
X. Li and Z. Y. Wu, Dynamic Downside Risk Measure and Optimal Asset Allocation, Presented at FMA, 2006. Google Scholar |
[14] |
H. Markowitz, Portfolio Selection, The Journal of Finance, 7 (1952), 77-91. Google Scholar |
[15] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investment, New York: John Wiley & Sons, 1959. |
[16] |
A. Nemirovski and A. Shapiro,
Convex approximations of chance constrained programs, SIAM Journal on Optimization, 17 (2006), 969-996.
doi: 10.1137/050622328. |
[17] |
Y. Sun, G. Aw, K. L. Teo and G. Zhou,
Portfolio optimization using a new probabilistic risk measure, Journal of Industrial and Management Optimization, 11 (2015), 1275-1283.
doi: 10.3934/jimo.2015.11.1275. |
[18] |
Y. Sun, G. Aw, K. L. Teo, Y. Zhu and X. Wang,
Multi-period portfolio optimization under probabilistic risk measure, Finance Research Letter, 44 (2016), 801-807.
doi: 10.1016/j.orl.2016.10.006. |
[19] |
K. L. Teo and X. Q. Yang,
Portfolio selection problem with minimax type risk function, Annals of Operations Research, 101 (2001), 333-349.
doi: 10.1023/A:1010909632198. |
[20] |
S. Zymler, D. Kuhn and B. Rustem,
Distributionally robust jonit chance constraints with second-order moment information, Math. Program. Ser. A, 137 (2013), 167-198.
doi: 10.1007/s10107-011-0494-7. |
show all references
References:
[1] |
X. Q. Cai, K. L. Teo, X. Q. Yang and X. Y.Zhou,
Portfolio optimization under a minimax rule, Management Science, 46 (2000), 957-972.
doi: 10.1287/mnsc.46.7.957.12039. |
[2] |
W. Chen, M. Sim, J. Sun and C. Teo,
From CVaR to uncertain set: Implications in joint chance-constrained optimization, Operations Research, 58 (2010), 470-485.
doi: 10.1287/opre.1090.0712. |
[3] |
M. C. Chiu, H. Y. Wong and D. Li,
Roy's safety-first portfolio principle in financial risk management of disastrous events, Risk Analysis, 32 (2012), 1856-1872.
doi: 10.1111/j.1539-6924.2011.01751.x. |
[4] |
X. T. Deng, Z. F. Li and S. Y. Wang,
A minimax portfolio selection strategy with equilibrium, European Journal of Operational Research, 166 (2005), 278-292.
doi: 10.1016/j.ejor.2004.01.040. |
[5] |
H. Konno,
Piecewise linear risk function and portfolio optimization, Journal of the Operations Research Society of Japan, 33 (1990), 139-156.
doi: 10.15807/jorsj.33.139. |
[6] |
H. Konno and K. Suzuki,
A mean-variance-skewness optimization model, Journal of the Operations Research Society of Japan, 38 (1995), 137-187.
doi: 10.15807/jorsj.38.173. |
[7] |
H. Konno and H. Yamazaki,
Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 501-623.
doi: 10.1287/mnsc.37.5.519. |
[8] |
B. Li, J. Sun, K. L. Teo, C. J. Yu and M. Zhang, A distributionally robust approach to a class of three-stage stochastic linear programs, Pacific Journal of Optimization, to appear. |
[9] |
B. Li, J. Sun, H. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400. Google Scholar |
[10] |
B. Li, Q. Xun, J. Sun, K. L. Teo and C. J. Yu,
A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.
doi: 10.1016/j.apm.2017.11.039. |
[11] |
B. Li, Y. Rong, J. Sun and K. L. Teo.,
A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109.
doi: 10.1109/LSP.2017.2773601. |
[12] |
B. Li, Y. Rong, J. Sun and K. L. Teo,
A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.
doi: 10.1109/TWC.2016.2625246. |
[13] |
X. Li and Z. Y. Wu, Dynamic Downside Risk Measure and Optimal Asset Allocation, Presented at FMA, 2006. Google Scholar |
[14] |
H. Markowitz, Portfolio Selection, The Journal of Finance, 7 (1952), 77-91. Google Scholar |
[15] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investment, New York: John Wiley & Sons, 1959. |
[16] |
A. Nemirovski and A. Shapiro,
Convex approximations of chance constrained programs, SIAM Journal on Optimization, 17 (2006), 969-996.
doi: 10.1137/050622328. |
[17] |
Y. Sun, G. Aw, K. L. Teo and G. Zhou,
Portfolio optimization using a new probabilistic risk measure, Journal of Industrial and Management Optimization, 11 (2015), 1275-1283.
doi: 10.3934/jimo.2015.11.1275. |
[18] |
Y. Sun, G. Aw, K. L. Teo, Y. Zhu and X. Wang,
Multi-period portfolio optimization under probabilistic risk measure, Finance Research Letter, 44 (2016), 801-807.
doi: 10.1016/j.orl.2016.10.006. |
[19] |
K. L. Teo and X. Q. Yang,
Portfolio selection problem with minimax type risk function, Annals of Operations Research, 101 (2001), 333-349.
doi: 10.1023/A:1010909632198. |
[20] |
S. Zymler, D. Kuhn and B. Rustem,
Distributionally robust jonit chance constraints with second-order moment information, Math. Program. Ser. A, 137 (2013), 167-198.
doi: 10.1007/s10107-011-0494-7. |


[1] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[2] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[3] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[4] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]