This study relaxes the distributional assumption of the return of the risky asset, to arrive at the optimal portfolio. Studies of portfolio selection models have typically assumed that stock returns conform to the normal distribution. The application of robust optimization techniques means that only the historical mean and variance of asset returns are required instead of distributional information. We show that the method results in an optimal portfolio that has comparable return and yet equivalent risk, to one that assumes normality of asset returns.
Citation: |
[1] |
X. Q. Cai, K. L. Teo, X. Q. Yang and X. Y.Zhou, Portfolio optimization under a minimax rule, Management Science, 46 (2000), 957-972.
doi: 10.1287/mnsc.46.7.957.12039.![]() ![]() |
[2] |
W. Chen, M. Sim, J. Sun and C. Teo, From CVaR to uncertain set: Implications in joint chance-constrained optimization, Operations Research, 58 (2010), 470-485.
doi: 10.1287/opre.1090.0712.![]() ![]() ![]() |
[3] |
M. C. Chiu, H. Y. Wong and D. Li, Roy's safety-first portfolio principle in financial risk management of disastrous events, Risk Analysis, 32 (2012), 1856-1872.
doi: 10.1111/j.1539-6924.2011.01751.x.![]() ![]() |
[4] |
X. T. Deng, Z. F. Li and S. Y. Wang, A minimax portfolio selection strategy with equilibrium, European Journal of Operational Research, 166 (2005), 278-292.
doi: 10.1016/j.ejor.2004.01.040.![]() ![]() ![]() |
[5] |
H. Konno, Piecewise linear risk function and portfolio optimization, Journal of the Operations Research Society of Japan, 33 (1990), 139-156.
doi: 10.15807/jorsj.33.139.![]() ![]() ![]() |
[6] |
H. Konno and K. Suzuki, A mean-variance-skewness optimization model, Journal of the Operations Research Society of Japan, 38 (1995), 137-187.
doi: 10.15807/jorsj.38.173.![]() ![]() |
[7] |
H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 501-623.
doi: 10.1287/mnsc.37.5.519.![]() ![]() |
[8] |
B. Li, J. Sun, K. L. Teo, C. J. Yu and M. Zhang, A distributionally robust approach to a class of three-stage stochastic linear programs, Pacific Journal of Optimization, to appear.
![]() ![]() |
[9] |
B. Li, J. Sun, H. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400.
![]() |
[10] |
B. Li, Q. Xun, J. Sun, K. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.
doi: 10.1016/j.apm.2017.11.039.![]() ![]() ![]() |
[11] |
B. Li, Y. Rong, J. Sun and K. L. Teo., A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109.
doi: 10.1109/LSP.2017.2773601.![]() ![]() |
[12] |
B. Li, Y. Rong, J. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.
doi: 10.1109/TWC.2016.2625246.![]() ![]() |
[13] |
X. Li and Z. Y. Wu, Dynamic Downside Risk Measure and Optimal Asset Allocation, Presented at FMA, 2006.
![]() |
[14] |
H. Markowitz, Portfolio Selection, The Journal of Finance, 7 (1952), 77-91.
![]() |
[15] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investment, New York: John Wiley & Sons, 1959.
![]() ![]() |
[16] |
A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM Journal on Optimization, 17 (2006), 969-996.
doi: 10.1137/050622328.![]() ![]() ![]() |
[17] |
Y. Sun, G. Aw, K. L. Teo and G. Zhou, Portfolio optimization using a new probabilistic risk measure, Journal of Industrial and Management Optimization, 11 (2015), 1275-1283.
doi: 10.3934/jimo.2015.11.1275.![]() ![]() ![]() |
[18] |
Y. Sun, G. Aw, K. L. Teo, Y. Zhu and X. Wang, Multi-period portfolio optimization under probabilistic risk measure, Finance Research Letter, 44 (2016), 801-807.
doi: 10.1016/j.orl.2016.10.006.![]() ![]() ![]() |
[19] |
K. L. Teo and X. Q. Yang, Portfolio selection problem with minimax type risk function, Annals of Operations Research, 101 (2001), 333-349.
doi: 10.1023/A:1010909632198.![]() ![]() ![]() |
[20] |
S. Zymler, D. Kuhn and B. Rustem, Distributionally robust jonit chance constraints with second-order moment information, Math. Program. Ser. A, 137 (2013), 167-198.
doi: 10.1007/s10107-011-0494-7.![]() ![]() ![]() |
Efficient Frontier Comparison
Frontier Comparison