In this work, a pair of higher-order symmetric dual multiobjective optimization problems is formulated. Weak, strong and converse duality theorems are established under suitable assumptions. Some examples are also given to illustrate our main results. Furthermore, certain deficiencies in the formulations and the proof of the work of Kassem [Applied Mathematics and Computation, 209 (2009), 405-409] are pointed out.
Citation: |
[1] |
R. P. Agarwal, I. Ahmad and S. K. Gupta, A note on higher-order nondifferentiable symmetric duality in multiobjective programming, Applied Mathematics Letters, 24 (2011), 1308-1311.
doi: 10.1016/j.aml.2011.02.021.![]() ![]() ![]() |
[2] |
I. Ahmad, Unified higher order duality in nondifferentiable multiobjective programming involving cones, Mathematical and Computer Modelling, 55 (2012), 419-425.
doi: 10.1016/j.mcm.2011.08.020.![]() ![]() ![]() |
[3] |
T. Antczak and G. J. Zalmai, Second order (Φ, ρ)-V-invexity and duality for semi-infinite minimax fractional programming, Applied Mathematics and Computation, 227 (2014), 831-856.
doi: 10.1016/j.amc.2013.10.050.![]() ![]() ![]() |
[4] |
M. S. Bazaraa and J. J. Goode, On symmetric duality in nonlinear programming, Operations Research, 21 (1973), 1-9.
doi: 10.1287/opre.21.1.1.![]() ![]() ![]() |
[5] |
S. Chandra and V. Kumar, A note on pseudo-invexity and symmetric duality, European Journal of Operational Research, 105 (1998), 626-629.
![]() |
[6] |
G. B. Dantzig, E. Eisenberg and R. W. Cottle, Symmetric dual non-linear programs, Pacific Journal of Mathematics, 23 (1965), 265-269.
doi: 10.2140/pjm.1965.15.809.![]() ![]() ![]() |
[7] |
I. P. Debnath, S. K. Gupta and I. Ahmad, A note on strong duality theorem for a multiobjective higher order nondifferentiable symmetric dual programs, Opsearch, 53 (2016), 151-156.
doi: 10.1007/s12597-015-0221-x.![]() ![]() ![]() |
[8] |
W. S. Dorn, A symmetric dual theorem for quadratic programming, Journal of the Operations Research Society of Japan, 2 (1960), 93-97.
![]() |
[9] |
Y. Gao, Higher-order symmetric duality in multiobjective programming problems, Acta Mathematicae Applicatae Sinica, English Series, 32 (2016), 485-494.
doi: 10.1007/s10255-016-0578-5.![]() ![]() ![]() |
[10] |
S. K. Gupta and A. Jayswal, Multiobjective higher-order symmetric duality involving generalized cone-invex functions, Computers & Mathematics with Applications, 60 (2010), 3187-3192.
doi: 10.1016/j.camwa.2010.10.023.![]() ![]() ![]() |
[11] |
A. Jayswal, I. Ahmad and A. K. Prasad, Higher Order Fractional Symmetric Duality Over Cone Constraints, Journal of Mathematical Modelling and Algorithms in Operations Research, 14 (2015), 91-101.
doi: 10.1007/s10852-014-9259-7.![]() ![]() ![]() |
[12] |
M. A. E. H. Kassem, Higher-order symmetric duality in vector optimization problem involving generalized cone-invex functions, Applied Mathematics and Computation, 209 (2009), 405-409.
doi: 10.1016/j.amc.2008.12.063.![]() ![]() ![]() |
[13] |
O. L. Mangasarian, Second and higher order duality in nonlinear programming problem, Journal of Mathematical Analysis and Applications, 51 (1975), 607-620.
doi: 10.1016/0022-247X(75)90111-0.![]() ![]() ![]() |
[14] |
S. K. Mishra and K. K. Lai, Second order symmetric duality in multiobjective programming involving generalized cone-invex functions, European Journal of Operational Research, 178 (2007), 20-26.
doi: 10.1016/j.ejor.2005.11.024.![]() ![]() ![]() |
[15] |
B. Mond and T. Weir, Generalized concavity and duality, in Generalized Concavity in Optimization and Economics (eds. S. Schaible and W. T. Ziemba), Academic Press, (1981), 263–279.
![]() |
[16] |
S. K. Padhan and C. Nahak, Higher-order symmetric duality in multiobjective programming problems under higher-order invexity, Applied Mathematics and Computation, 218 (2011), 1705-1712.
doi: 10.1016/j.amc.2011.06.049.![]() ![]() ![]() |
[17] |
S. K. Suneja, S. Aggarwal and S. Davar, Multiobjective symmetric duality involving cones, European Journal of Operational Research, 141 (2002), 471-479.
doi: 10.1016/S0377-2217(01)00258-2.![]() ![]() ![]() |
[18] |
S. K. Suneja and P. Louhan, Higher-order symmetric duality under cone-invexity and other related concepts, Journal of Computational and Applied Mathematics, 255 (2014), 825-836.
doi: 10.1016/j.cam.2013.07.003.![]() ![]() ![]() |
[19] |
L. P. Tang, H. Yan and X. M. Yang, Second order duality for multiobjective programming with cone constraints, Science China Mathematics, 59 (2016), 1285-1306.
doi: 10.1007/s11425-016-5147-0.![]() ![]() ![]() |
[20] |
X. M. Yang, X. Q. Yang and K. L. Teo, Higher-order symmetric duality in multiobjective mathematical programming with invexity, Journal of Industrial and Management Optimization, 4 (2008), 335-391.
doi: 10.3934/jimo.2008.4.385.![]() ![]() ![]() |
[21] |
X. M. Yang, J. Yang, T. L. Yip and K. L. Teo, Higher-order Mond-Weir converse duality in multiobjective programming involving cones, Science China Mathematics, 56 (2013), 2389-2392.
doi: 10.1007/s11425-013-4700-3.![]() ![]() ![]() |
[22] |
X. M. Yang, J. Yang and H. W. J. Lee, Strong duality theorem for multiobjective higher order nondifferentiable symmetric dual programs, Journal of Industrial and Management Optimization, 9 (2013), 525-530.
doi: 10.3934/jimo.2013.9.525.![]() ![]() ![]() |
[23] |
X. M. Yang and K. L. Teo, A converse duality theorem on higher-order dual models in nondifferentiable mathematical programming, Optimization Letters, 6 (2012), 11-15.
doi: 10.1007/s11590-010-0247-1.![]() ![]() ![]() |