
-
Previous Article
Impact of risk aversion on two-echelon supply chain systems with carbon emission reduction constraints
- JIMO Home
- This Issue
-
Next Article
Sparse signal reconstruction via the approximations of $ \ell_{0} $ quasinorm
An application of crypto cloud computing in social networks by cooperative game theory
1. | Department of Electrical and Electronic Engineering, Isparta University of Applied Sciences, Isparta, Turkey |
2. | Department of Mathematics, Süleyman Demirel University, Isparta, Turkey, Institute of Applied Mathematics, METU, Ankara, Turkey |
3. | Faculty of Engineering Management, Chair of Marketing and Economic Engineering, Poznan University of Technology, Poznan, Poland, Institute of Applied Mathematics, METU, Ankara, Turkey |
In this paper, we mathematically associate Crypto Cloud Computing, that has become an emerging research area, with Cooperative Game Theory in the presence of uncertainty. In the sequel, we retrieve data from the database of Amazon Web Service. The joint view upon Crypto Cloud Computing, Cooperative Game Theory and Uncertainty management is a novel approach. For this purpose, we construct a cooperative interval game model and apply this model to Social Networks. Then, we suggest some interval solutions related with the model by proposing a novel elliptic curve public key encryption scheme over finite fields having the property of semantic security. The paper ends with concluding words and an outlook to future studies.
References:
[1] |
S. P. Ahuja and B. Moore,
A Survey of Cloud Computing and Social Networks, Network and Communication Technologies, 2 (2013), 11-16.
doi: 10.5539/nct.v2n2p11. |
[2] |
S. Z. Alparslan Gök, R. Branzei and S. Tijs,
The interval Shapley value: an axiomatization, Central European Journal of Operations Research, 18 (2010), 131-140.
doi: 10.1007/s10100-009-0096-0. |
[3] |
S. Z. Alparslan Gök, R. Branzei and S. Tijs, Convex interval games, Journal of Applied Mathematics and Decision Sciences, 2009 (2009), Article ID 342089, 14 pages.
doi: 10.1155/2009/342089. |
[4] |
S. Z. Alparslan Gök, O. Palancıand and M. O. Olgun,
Cooperative interval games: Mountain situations with interval data, Journal of Computational and Applied Mathematics, 259 (2014), 622-632.
doi: 10.1016/j.cam.2013.01.021. |
[5] |
S. Z. Alparslan Gök and G.-W. Weber,
On dominance core and stable sets for cooperative ellipsoidal games, Optimization, 62 (2013), 1297-1308.
doi: 10.1080/02331934.2013.793327. |
[6] |
Amazon Web Services, Available from: http://calculator.s3.amazonaws.com/index.html. Google Scholar |
[7] |
M. Ashraf and B. B. Kırlar,
Message transmission for GH- public key cryptosystem, Journal of Computational and Applied Mathematics, 259 (2014), 578-585.
doi: 10.1016/j.cam.2013.10.005. |
[8] |
M. Ashraf and B. B. Kırlar, On the Alternate Models of Elliptic Curves, International Journal of Information Security Science, 1 (2012), 49-66. Google Scholar |
[9] |
D. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters, Twisted Edwards curves, Progress in Cryptology - Africacrypt 2008, Lecture Notes in Computer Science, 5023 (2008), Springer, 389–405.
doi: 10.1007/978-3-540-68164-9_26. |
[10] |
D. Bernstein, C. Chuengsatiansup, D. Kohel and T. Lange, Twisted Hessian curves, Progress in Cryptology—LATINCRYPT 2015, 269–294, Lecture Notes in Comput. Sci., 9230, Springer, Cham, 2015. Available from https://eprint.iacr.org/2015/781.pdf.
doi: 10.1007/978-3-319-22174-8_15. |
[11] |
D. Bernstein and T. Lange, Explicit Formulas Database, Available from http://www.hyperelliptic.org/EFD. Google Scholar |
[12] |
D. Bernstein and T. Lange, Faster addition and doubling on elliptic curves, Progress in Cryptology - Asiacrypt 2007, Lecture Notes in Computer Science, 4833 (2007), Springer, 29–50.
doi: 10.1007/978-3-540-76900-2_3. |
[13] |
D. Bernstein, T. Lange and R. R. Farashahi, Binary Edwards Curves, Cryptographic Hardware and Embedded Systems - CHES 2008, Lecture Notes in Computer Science, 5154 (2008), Springer, 244–265.
doi: 10.1007/978-3-540-85053-3_16. |
[14] |
O. Billet and M. Joye, The Jacobi model of an elliptic curve and side-channel analysis, AAECC 2003, Lecture Notes in Computer Science, 2643 (2003), Springer-Verlag, 34–42.
doi: 10.1007/3-540-44828-4_5. |
[15] |
C. G. Bird,
On cost allocation for a spanning tree: A game theoretic approach, Networks, 6 (1976), 335-350.
doi: 10.1002/net.3230060404. |
[16] |
P. Borm, H. Hamers and R. Hendrickx,
Operations research games: A survey, TOP, 9 (2001), 139-216.
doi: 10.1007/BF02579075. |
[17] |
R. Branzei, S. Tijs and S. Z. Alparslan Gök,
How to handle interval solutions for cooperative interval games, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18 (2010), 123-132.
doi: 10.1142/S0218488510006441. |
[18] |
R. Branzei, S. Z. Alparslan Gök and O. Branzei,
Cooperative games under interval uncertainty: on the convexity of the interval undominated cores, Central European Journal of Operations Research, 19 (2011), 523-532.
doi: 10.1007/s10100-010-0141-z. |
[19] |
K. Chard, S. Caton, O. Rana and K. Bubendorfer, Social cloud: Cloud computing in social networks, IEEE 3rd International Conference on Cloud Computing, (2010), 99–106.
doi: 10.1109/CLOUD.2010.28. |
[20] |
A. A. Ciss and D. Sow, On a New Generalization of Huff Curves, 2011. Available from http://eprint.iacr.org/2011/580.pdf. Google Scholar |
[21] |
A. Claus and D. J. Kleitman,
Cost allocation for a spanning tree, Networks, 3 (1973), 289-304.
doi: 10.1002/net.3230030402. |
[22] |
J. Devigne and M. Joye, Binary Huff Curves, Topics in Cryptology - CT-RSA 2011, Lecture Notes in Computer Science, 6558 (2011), Springer, 340–355.
doi: 10.1007/978-3-642-19074-2_22. |
[23] |
H. Edwards,
A normal form for elliptic curves, Bulletin of the American Mathematical Society, 44 (2007), 393-422.
doi: 10.1090/S0273-0979-07-01153-6. |
[24] |
J. R. Evans and E. Minieka, Optimization Algorithms for Networks and Graphs, CRC Press,
1992. |
[25] |
K. A. Falahi, Y. Atif and S. Elnaffar, Social networks: Challenges and new opportunities, In Proceedings of the 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing, (2010), 804–808.
doi: 10.1109/GreenCom-CPSCom.2010.14. |
[26] |
R. R. Farashahi and M. Joye, Efficient Arithmetic on Hessian Curves, Public Key Cryptography - PKC 2010, Lecture Notes in Computer Science, 6056 (2010), Springer, 243–260.
doi: 10.1007/978-3-642-13013-7_15. |
[27] |
R. Feng, M. Nie and H. Wu, Twisted jacobi intersections curves, Theory and Applications of Models of Computation, 2010,199–210, Available from http://eprint.iacr.org/2009/597.pdf.
doi: 10.1007/978-3-642-13562-0_19. |
[28] |
D. Granot,
Cooperative games in stochastic characteristic function form, Management Science, 23 (1977), 621-630.
doi: 10.1287/mnsc.23.6.621. |
[29] |
T. S. Gustavsen and K. Ranestad,
A simple point counting algorithm for hessian elliptic curves in characteristic three, Appl. Algebra Eng. Commun. Comput., 17 (2006), 141-150.
doi: 10.1007/s00200-006-0013-x. |
[30] |
D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2004.
doi: 10.1016/s0012-365x(04)00102-5. |
[31] |
H. Hisil, K. Koon-Ho Wong, G. Carter and E. Dawson, Twisted Edwards Curves Revisited, Advances in Cryptology - Asiacrypt 2008, Lecture Notes in Computer Science, 5350 (2008), Springer-Verlag, 326–343.
doi: 10.1007/978-3-540-89255-7_20. |
[32] |
H. Hisil, K. Koon-Ho Wong, G. Carter and E. Dawson, Jacobi quartic curves revisited, ACISP, 2009,452–468.
doi: 10.1007/978-3-642-02620-1_31. |
[33] |
G. Huff,
Diophantine problems in geometry and elliptic ternary forms, Duke Math. J., 15 (1948), 443-453.
doi: 10.1215/S0012-7094-48-01543-9. |
[34] |
M. Joye and J. Quisquater, Hessian elliptic curves and sidechannel attacks, Cryptographic Hardware and Embedded Systems - CHES 2001, Lecture Notes in Computer Science, 2162 (2001), Springer, 402–410.
doi: 10.1007/3-540-44709-1_33. |
[35] |
M. Joye, M. Tibbouchi and D. Vergnaud, Huff's Model for Elliptic Curves, Algorithmic Number Theory - ANTS-IX, Lecture Notes in Computer Science, 6197 (2010), Springer, 234–250.
doi: 10.1007/978-3-642-14518-6_20. |
[36] |
E. Kilic, A. Karimov and G.-W. Weber, Applications of stochastic hybrid systems in portfolio optimization, In: Thomaidis N, DashGHJr, editors. Recent Advances in Computational Finance. (NY): Nova Science. Google Scholar |
[37] |
B. B. Kırlar and M. Çil,
On the k-th order LFSR sequence with public key cryptosystems, Mathematica Slovaca, 67 (2017), 601-610.
doi: 10.1515/ms-2016-0294. |
[38] |
B. B. Kırlar, S. Ergün, S. Z. Alparslan Gök and G.-W. Weber,
A game-theoretical and cryptographical approach to crypto-cloud computing and its economical and financial aspects, Annals of Operations Research, 260 (2018), 217-231.
doi: 10.1007/s10479-016-2139-y. |
[39] |
N. Koblitz,
Elliptic curve cryptosystems, Mathematics of Computation, 48 (1987), 203-209.
doi: 10.1090/S0025-5718-1987-0866109-5. |
[40] |
N. Koblitz, A. Menezes and S. Vanstone,
The State of Elliptic Curve Cryptography, Designs, Codes and Cryptography, 19 (2000), 173-193.
doi: 10.1023/A:1008354106356. |
[41] |
E. Kropat, G.-W. Weber and J.-J. Rückmann.,
Regression analysis for clusters in gene environment networks based on ellipsoidal calculus and optimization., Dyn. Cont. Dis. Impulsive Syst. Ser. B., 17 (2010), 639-657.
|
[42] |
P. Liardet and N. Smart, Preventing SPA/DPA in ECC systems using the Jacobi form, Cryptographic Hardware and Embedded Systems - CHES 2001, Lecture Notes in Computer Science, 2162 (2001), Springer-Verlag, 391–401.
doi: 10.1007/3-540-44709-1_32. |
[43] |
P. Maillé, P. Reichl and B. Tuffin, Of threats and costs: A game-theoretic approach to security risk management, In: Performance Models and Risk Management in Communications Systems, 46 (2011), Springer, New York, 33–53.
doi: 10.1007/978-1-4419-0534-5_2. |
[44] |
M. Mares, Fuzzy Cooperative Games: Cooperation with Vague Expectations, Physica Verlag, Heidelberg, 2001.
doi: 10.1007/978-3-7908-1820-8. |
[45] |
V. Miller,
Use of elliptic curves in cryptography, Advances in Cryptology – CRYPTO –85, Lecture Notes in Computer Science, 218 (1986), 417-426.
doi: 10.1007/3-540-39799-X_31. |
[46] |
S. Moretti, S. Z. Alparslan Gök, R. Branzei and S. Tijs,
Connection situations under uncertainty and cost monotonic solutions, Computers & Operations Research, 38 (2011), 1638-1645.
doi: 10.1016/j.cor.2011.02.004. |
[47] |
A. Muratovic-Ribic and Q. Wang, Partitions and Compositions over Finite Fields, The Electronic Journal of Combinatorics, 20 (2013), Paper 34, 14 pp. |
[48] |
N. G. Orhon and H. Hisil,
Speeding up Huff Form of Elliptic Curves, Designs, Codes and Cryptography, 86 (2018), 2807-2823.
doi: 10.1007/s10623-018-0475-4. |
[49] |
O. Palancı, S. Z. Alparslan Gök, S. Ergün and G.-W. Weber,
Cooperative grey games and the grey Shapley value, Optimization, 64 (2015), 1657-1668.
doi: 10.1080/02331934.2014.956743. |
[50] |
L. S. Shapley,
A value for n-person games, Annals of Mathematics Studies, 28 (1953), 307-317.
|
[51] |
J. Silverman, The Arithmetic of Elliptic Curves, Springer, Berlin, 1986.
doi: 10.1007/978-1-4757-1920-8. |
[52] |
N. Smart and E. J. Westwood,
Point multiplication on ordinary elliptic curves over fields of characteristic three, Appl. Algebra Eng. Commun. Comput., 13 (2003), 485-497.
doi: 10.1007/s00200-002-0114-0. |
[53] |
J. Suijs, P. Borm, A. De Waegenaere and S. Tijs,
Cooperative games with stochastic payoffs, European Journal of Operational Research, 113 (1999), 193-205.
doi: 10.1016/S0377-2217(97)00421-9. |
[54] |
D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996. |
[55] |
H. Wu and R. Feng, Elliptic curves in Huff's model, Wuhan University Journal of Natural Sciences, 17 (2012), 473–480. Available from http://eprint.iacr.org/2010/390.pdf.
doi: 10.1007/s11859-012-0873-9. |
show all references
References:
[1] |
S. P. Ahuja and B. Moore,
A Survey of Cloud Computing and Social Networks, Network and Communication Technologies, 2 (2013), 11-16.
doi: 10.5539/nct.v2n2p11. |
[2] |
S. Z. Alparslan Gök, R. Branzei and S. Tijs,
The interval Shapley value: an axiomatization, Central European Journal of Operations Research, 18 (2010), 131-140.
doi: 10.1007/s10100-009-0096-0. |
[3] |
S. Z. Alparslan Gök, R. Branzei and S. Tijs, Convex interval games, Journal of Applied Mathematics and Decision Sciences, 2009 (2009), Article ID 342089, 14 pages.
doi: 10.1155/2009/342089. |
[4] |
S. Z. Alparslan Gök, O. Palancıand and M. O. Olgun,
Cooperative interval games: Mountain situations with interval data, Journal of Computational and Applied Mathematics, 259 (2014), 622-632.
doi: 10.1016/j.cam.2013.01.021. |
[5] |
S. Z. Alparslan Gök and G.-W. Weber,
On dominance core and stable sets for cooperative ellipsoidal games, Optimization, 62 (2013), 1297-1308.
doi: 10.1080/02331934.2013.793327. |
[6] |
Amazon Web Services, Available from: http://calculator.s3.amazonaws.com/index.html. Google Scholar |
[7] |
M. Ashraf and B. B. Kırlar,
Message transmission for GH- public key cryptosystem, Journal of Computational and Applied Mathematics, 259 (2014), 578-585.
doi: 10.1016/j.cam.2013.10.005. |
[8] |
M. Ashraf and B. B. Kırlar, On the Alternate Models of Elliptic Curves, International Journal of Information Security Science, 1 (2012), 49-66. Google Scholar |
[9] |
D. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters, Twisted Edwards curves, Progress in Cryptology - Africacrypt 2008, Lecture Notes in Computer Science, 5023 (2008), Springer, 389–405.
doi: 10.1007/978-3-540-68164-9_26. |
[10] |
D. Bernstein, C. Chuengsatiansup, D. Kohel and T. Lange, Twisted Hessian curves, Progress in Cryptology—LATINCRYPT 2015, 269–294, Lecture Notes in Comput. Sci., 9230, Springer, Cham, 2015. Available from https://eprint.iacr.org/2015/781.pdf.
doi: 10.1007/978-3-319-22174-8_15. |
[11] |
D. Bernstein and T. Lange, Explicit Formulas Database, Available from http://www.hyperelliptic.org/EFD. Google Scholar |
[12] |
D. Bernstein and T. Lange, Faster addition and doubling on elliptic curves, Progress in Cryptology - Asiacrypt 2007, Lecture Notes in Computer Science, 4833 (2007), Springer, 29–50.
doi: 10.1007/978-3-540-76900-2_3. |
[13] |
D. Bernstein, T. Lange and R. R. Farashahi, Binary Edwards Curves, Cryptographic Hardware and Embedded Systems - CHES 2008, Lecture Notes in Computer Science, 5154 (2008), Springer, 244–265.
doi: 10.1007/978-3-540-85053-3_16. |
[14] |
O. Billet and M. Joye, The Jacobi model of an elliptic curve and side-channel analysis, AAECC 2003, Lecture Notes in Computer Science, 2643 (2003), Springer-Verlag, 34–42.
doi: 10.1007/3-540-44828-4_5. |
[15] |
C. G. Bird,
On cost allocation for a spanning tree: A game theoretic approach, Networks, 6 (1976), 335-350.
doi: 10.1002/net.3230060404. |
[16] |
P. Borm, H. Hamers and R. Hendrickx,
Operations research games: A survey, TOP, 9 (2001), 139-216.
doi: 10.1007/BF02579075. |
[17] |
R. Branzei, S. Tijs and S. Z. Alparslan Gök,
How to handle interval solutions for cooperative interval games, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18 (2010), 123-132.
doi: 10.1142/S0218488510006441. |
[18] |
R. Branzei, S. Z. Alparslan Gök and O. Branzei,
Cooperative games under interval uncertainty: on the convexity of the interval undominated cores, Central European Journal of Operations Research, 19 (2011), 523-532.
doi: 10.1007/s10100-010-0141-z. |
[19] |
K. Chard, S. Caton, O. Rana and K. Bubendorfer, Social cloud: Cloud computing in social networks, IEEE 3rd International Conference on Cloud Computing, (2010), 99–106.
doi: 10.1109/CLOUD.2010.28. |
[20] |
A. A. Ciss and D. Sow, On a New Generalization of Huff Curves, 2011. Available from http://eprint.iacr.org/2011/580.pdf. Google Scholar |
[21] |
A. Claus and D. J. Kleitman,
Cost allocation for a spanning tree, Networks, 3 (1973), 289-304.
doi: 10.1002/net.3230030402. |
[22] |
J. Devigne and M. Joye, Binary Huff Curves, Topics in Cryptology - CT-RSA 2011, Lecture Notes in Computer Science, 6558 (2011), Springer, 340–355.
doi: 10.1007/978-3-642-19074-2_22. |
[23] |
H. Edwards,
A normal form for elliptic curves, Bulletin of the American Mathematical Society, 44 (2007), 393-422.
doi: 10.1090/S0273-0979-07-01153-6. |
[24] |
J. R. Evans and E. Minieka, Optimization Algorithms for Networks and Graphs, CRC Press,
1992. |
[25] |
K. A. Falahi, Y. Atif and S. Elnaffar, Social networks: Challenges and new opportunities, In Proceedings of the 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing, (2010), 804–808.
doi: 10.1109/GreenCom-CPSCom.2010.14. |
[26] |
R. R. Farashahi and M. Joye, Efficient Arithmetic on Hessian Curves, Public Key Cryptography - PKC 2010, Lecture Notes in Computer Science, 6056 (2010), Springer, 243–260.
doi: 10.1007/978-3-642-13013-7_15. |
[27] |
R. Feng, M. Nie and H. Wu, Twisted jacobi intersections curves, Theory and Applications of Models of Computation, 2010,199–210, Available from http://eprint.iacr.org/2009/597.pdf.
doi: 10.1007/978-3-642-13562-0_19. |
[28] |
D. Granot,
Cooperative games in stochastic characteristic function form, Management Science, 23 (1977), 621-630.
doi: 10.1287/mnsc.23.6.621. |
[29] |
T. S. Gustavsen and K. Ranestad,
A simple point counting algorithm for hessian elliptic curves in characteristic three, Appl. Algebra Eng. Commun. Comput., 17 (2006), 141-150.
doi: 10.1007/s00200-006-0013-x. |
[30] |
D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2004.
doi: 10.1016/s0012-365x(04)00102-5. |
[31] |
H. Hisil, K. Koon-Ho Wong, G. Carter and E. Dawson, Twisted Edwards Curves Revisited, Advances in Cryptology - Asiacrypt 2008, Lecture Notes in Computer Science, 5350 (2008), Springer-Verlag, 326–343.
doi: 10.1007/978-3-540-89255-7_20. |
[32] |
H. Hisil, K. Koon-Ho Wong, G. Carter and E. Dawson, Jacobi quartic curves revisited, ACISP, 2009,452–468.
doi: 10.1007/978-3-642-02620-1_31. |
[33] |
G. Huff,
Diophantine problems in geometry and elliptic ternary forms, Duke Math. J., 15 (1948), 443-453.
doi: 10.1215/S0012-7094-48-01543-9. |
[34] |
M. Joye and J. Quisquater, Hessian elliptic curves and sidechannel attacks, Cryptographic Hardware and Embedded Systems - CHES 2001, Lecture Notes in Computer Science, 2162 (2001), Springer, 402–410.
doi: 10.1007/3-540-44709-1_33. |
[35] |
M. Joye, M. Tibbouchi and D. Vergnaud, Huff's Model for Elliptic Curves, Algorithmic Number Theory - ANTS-IX, Lecture Notes in Computer Science, 6197 (2010), Springer, 234–250.
doi: 10.1007/978-3-642-14518-6_20. |
[36] |
E. Kilic, A. Karimov and G.-W. Weber, Applications of stochastic hybrid systems in portfolio optimization, In: Thomaidis N, DashGHJr, editors. Recent Advances in Computational Finance. (NY): Nova Science. Google Scholar |
[37] |
B. B. Kırlar and M. Çil,
On the k-th order LFSR sequence with public key cryptosystems, Mathematica Slovaca, 67 (2017), 601-610.
doi: 10.1515/ms-2016-0294. |
[38] |
B. B. Kırlar, S. Ergün, S. Z. Alparslan Gök and G.-W. Weber,
A game-theoretical and cryptographical approach to crypto-cloud computing and its economical and financial aspects, Annals of Operations Research, 260 (2018), 217-231.
doi: 10.1007/s10479-016-2139-y. |
[39] |
N. Koblitz,
Elliptic curve cryptosystems, Mathematics of Computation, 48 (1987), 203-209.
doi: 10.1090/S0025-5718-1987-0866109-5. |
[40] |
N. Koblitz, A. Menezes and S. Vanstone,
The State of Elliptic Curve Cryptography, Designs, Codes and Cryptography, 19 (2000), 173-193.
doi: 10.1023/A:1008354106356. |
[41] |
E. Kropat, G.-W. Weber and J.-J. Rückmann.,
Regression analysis for clusters in gene environment networks based on ellipsoidal calculus and optimization., Dyn. Cont. Dis. Impulsive Syst. Ser. B., 17 (2010), 639-657.
|
[42] |
P. Liardet and N. Smart, Preventing SPA/DPA in ECC systems using the Jacobi form, Cryptographic Hardware and Embedded Systems - CHES 2001, Lecture Notes in Computer Science, 2162 (2001), Springer-Verlag, 391–401.
doi: 10.1007/3-540-44709-1_32. |
[43] |
P. Maillé, P. Reichl and B. Tuffin, Of threats and costs: A game-theoretic approach to security risk management, In: Performance Models and Risk Management in Communications Systems, 46 (2011), Springer, New York, 33–53.
doi: 10.1007/978-1-4419-0534-5_2. |
[44] |
M. Mares, Fuzzy Cooperative Games: Cooperation with Vague Expectations, Physica Verlag, Heidelberg, 2001.
doi: 10.1007/978-3-7908-1820-8. |
[45] |
V. Miller,
Use of elliptic curves in cryptography, Advances in Cryptology – CRYPTO –85, Lecture Notes in Computer Science, 218 (1986), 417-426.
doi: 10.1007/3-540-39799-X_31. |
[46] |
S. Moretti, S. Z. Alparslan Gök, R. Branzei and S. Tijs,
Connection situations under uncertainty and cost monotonic solutions, Computers & Operations Research, 38 (2011), 1638-1645.
doi: 10.1016/j.cor.2011.02.004. |
[47] |
A. Muratovic-Ribic and Q. Wang, Partitions and Compositions over Finite Fields, The Electronic Journal of Combinatorics, 20 (2013), Paper 34, 14 pp. |
[48] |
N. G. Orhon and H. Hisil,
Speeding up Huff Form of Elliptic Curves, Designs, Codes and Cryptography, 86 (2018), 2807-2823.
doi: 10.1007/s10623-018-0475-4. |
[49] |
O. Palancı, S. Z. Alparslan Gök, S. Ergün and G.-W. Weber,
Cooperative grey games and the grey Shapley value, Optimization, 64 (2015), 1657-1668.
doi: 10.1080/02331934.2014.956743. |
[50] |
L. S. Shapley,
A value for n-person games, Annals of Mathematics Studies, 28 (1953), 307-317.
|
[51] |
J. Silverman, The Arithmetic of Elliptic Curves, Springer, Berlin, 1986.
doi: 10.1007/978-1-4757-1920-8. |
[52] |
N. Smart and E. J. Westwood,
Point multiplication on ordinary elliptic curves over fields of characteristic three, Appl. Algebra Eng. Commun. Comput., 13 (2003), 485-497.
doi: 10.1007/s00200-002-0114-0. |
[53] |
J. Suijs, P. Borm, A. De Waegenaere and S. Tijs,
Cooperative games with stochastic payoffs, European Journal of Operational Research, 113 (1999), 193-205.
doi: 10.1016/S0377-2217(97)00421-9. |
[54] |
D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996. |
[55] |
H. Wu and R. Feng, Elliptic curves in Huff's model, Wuhan University Journal of Natural Sciences, 17 (2012), 473–480. Available from http://eprint.iacr.org/2010/390.pdf.
doi: 10.1007/s11859-012-0873-9. |


Form of elliptic curves | Coordinates | Unified addition |
Weierstrass | Projective | 11M+5S+1D |
Edwards [23] | Projective | 10M+1S+1D |
Projective | 10M+1S+2D | |
Twisted Edwards [9,31] | Inverted | 9M+1S+2D |
Extended | 9M+2D | |
Jacobi Intersections [14] | Projective | 13M+2S+1D |
Twisted Jacobi Intersections [27] | Projective | 13M+2S+5D |
Extended Jacobi Quartics [32] | Jacobian | 10M+3S+1D |
Extended Projective | 8M+3S+2D | |
Hessian Curves [34] | Projective | 12M |
Generalized Hessian Curves [26] | Projective | 12M+1D |
Twisted Hessian Curves [10] | Projective | 11M |
Huff Curves [35] | Projective | 11M |
Generalized Huff Curves [55] | Projective | 11M+3D |
New Generalized Huff Curves [20] | Projective | 12M+4D |
Extended Huff Curves [48] | Projective | 10M |
Form of elliptic curves | Coordinates | Unified addition |
Weierstrass | Projective | 11M+5S+1D |
Edwards [23] | Projective | 10M+1S+1D |
Projective | 10M+1S+2D | |
Twisted Edwards [9,31] | Inverted | 9M+1S+2D |
Extended | 9M+2D | |
Jacobi Intersections [14] | Projective | 13M+2S+1D |
Twisted Jacobi Intersections [27] | Projective | 13M+2S+5D |
Extended Jacobi Quartics [32] | Jacobian | 10M+3S+1D |
Extended Projective | 8M+3S+2D | |
Hessian Curves [34] | Projective | 12M |
Generalized Hessian Curves [26] | Projective | 12M+1D |
Twisted Hessian Curves [10] | Projective | 11M |
Huff Curves [35] | Projective | 11M |
Generalized Huff Curves [55] | Projective | 11M+3D |
New Generalized Huff Curves [20] | Projective | 12M+4D |
Extended Huff Curves [48] | Projective | 10M |
PARAMETERS | SNC1 | SNC2 | SNC3 | SNC1-SNC2 | SNC1-SNC3 | SNC2-SNC3 | SNC1-SNC2-SNC3 |
Load Balancer | 500 | 500 | 3000 | 1000 | 3500 | 3500 | 4000 |
(GB/Month) for EC2 | |||||||
Web Server | 1/2 | 1/2 | 1/2 | 1/4 | 1/4 | 1/4 | 1/6 |
(Year/Piece) for EC2 | |||||||
App Server | 1/2 | 1/2 | 1/2 | 1/4 | 1/4 | 1/4 | 1/6 |
(Year/Piece) for EC2 | |||||||
Storage: EBS Volume | 6/2500 | 6/3000 | 6/8000 | 12/5500 | 12/10500 | 12/11000 | 18/13500 |
(Volume/GB) for EC2 | |||||||
Storage | 10 | 100 | 200 | 110 | 210 | 300 | 310 |
(TB) for S3 | |||||||
Data Transfer Out | 200 | 900 | 6400 | 1100 | 6600 | 7300 | 7700 |
(GB/Month) for EC2 | |||||||
Data Transfer In (GB/Month) | 1000 | 500 | 10000 | 1500 | 11000 | 10500 | 11500 |
for EC2 | |||||||
Data Transfer Out | 1000 | 3000 | 10000 | 4000 | 11000 | 13000 | 11000 |
(GB/Month) for CloudFront | |||||||
Data Storage | 30 | 200 | 350 | 230 | 380 | 550 | 380 |
(TB) for Dynoma | |||||||
Data Transfer Out | 200 | 250 | 1500 | 450 | 17000 | 1750 | 1700 |
(GB/Month) for Dynoma |
PARAMETERS | SNC1 | SNC2 | SNC3 | SNC1-SNC2 | SNC1-SNC3 | SNC2-SNC3 | SNC1-SNC2-SNC3 |
Load Balancer | 500 | 500 | 3000 | 1000 | 3500 | 3500 | 4000 |
(GB/Month) for EC2 | |||||||
Web Server | 1/2 | 1/2 | 1/2 | 1/4 | 1/4 | 1/4 | 1/6 |
(Year/Piece) for EC2 | |||||||
App Server | 1/2 | 1/2 | 1/2 | 1/4 | 1/4 | 1/4 | 1/6 |
(Year/Piece) for EC2 | |||||||
Storage: EBS Volume | 6/2500 | 6/3000 | 6/8000 | 12/5500 | 12/10500 | 12/11000 | 18/13500 |
(Volume/GB) for EC2 | |||||||
Storage | 10 | 100 | 200 | 110 | 210 | 300 | 310 |
(TB) for S3 | |||||||
Data Transfer Out | 200 | 900 | 6400 | 1100 | 6600 | 7300 | 7700 |
(GB/Month) for EC2 | |||||||
Data Transfer In (GB/Month) | 1000 | 500 | 10000 | 1500 | 11000 | 10500 | 11500 |
for EC2 | |||||||
Data Transfer Out | 1000 | 3000 | 10000 | 4000 | 11000 | 13000 | 11000 |
(GB/Month) for CloudFront | |||||||
Data Storage | 30 | 200 | 350 | 230 | 380 | 550 | 380 |
(TB) for Dynoma | |||||||
Data Transfer Out | 200 | 250 | 1500 | 450 | 17000 | 1750 | 1700 |
(GB/Month) for Dynoma |
Amazon Web Services | Total Cost of Company ($) |
SNC1 | |
SNC2 | |
SNC3 | |
SNC1-SNC2 | |
SNC1-SNC3 | |
SNC2-SNC3 | |
SNC1-SNC2-SNC3 |
Amazon Web Services | Total Cost of Company ($) |
SNC1 | |
SNC2 | |
SNC3 | |
SNC1-SNC2 | |
SNC1-SNC3 | |
SNC2-SNC3 | |
SNC1-SNC2-SNC3 |
[1] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[2] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[3] |
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002 |
[4] |
Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37 |
[5] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[6] |
Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299 |
[7] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[8] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[9] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[10] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[11] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[12] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[13] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[14] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[15] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[16] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[17] |
Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057 |
[18] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[19] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[20] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]