To locate all $ Z$-eigenvalues of a tensor more precisely, we establish three $Z$-eigenvalue exclusion sets such that all $ Z$-eigenvalues do not belong to them and get three tighter $Z$-eigenvalue inclusion sets of tensor by using these $Z$-eigenvalue exclusion sets. Furthermore, we show that the new inclusion sets are tighter than the existing results via two running examples.
Citation: |
[1] |
L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, in Medical Image Computing and Computer-Assisted Intervention, Springer, (2008), 1–8.
doi: 10.1007/978-3-540-85988-8_1.![]() ![]() |
[2] |
K. Chang, K. Pearson and T. Zhang, Some variational principles for $Z$-eigenvalues of nonnegative tensors, Linear Algebra and its Applications, 438 (2013), 4166-4182.
doi: 10.1016/j.laa.2013.02.013.![]() ![]() ![]() |
[3] |
H. Chen, L. Qi and Y. Song, Column sufficient tensors and tensor complementarity problems, Frontiers of Mathematics in China, 13 (2018), 255-276.
doi: 10.1007/s11464-018-0681-4.![]() ![]() ![]() |
[4] |
H. Chen, Y. Chen, G. Li and L. Qi, A semi-definite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test, Numerical Linear Algebra with applications, 25 (2018), e2125, 16pp.
doi: 10.1002/nla.2125.![]() ![]() ![]() |
[5] |
L. De Lathauwer, B. De Moor and J. Vandewalle, A multilinear singular value decomposition, SIAM Journal on Matrix Analysis and Applications, 21 (2000), 1253-1278.
doi: 10.1137/S0895479896305696.![]() ![]() ![]() |
[6] |
S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra and its Applications, 438 (2013), 738-749.
doi: 10.1016/j.laa.2011.02.042.![]() ![]() ![]() |
[7] |
L. Gao, D. Wang and G. Wang, Further results on exponential stability for impulsive switched nonlinear time-delay systems with delayed impulse effects, Applied Mathematics and Computation, 268 (2015), 186-200.
doi: 10.1016/j.amc.2015.06.023.![]() ![]() ![]() |
[8] |
L. Gao, D. Wang and G. Zong., Exponential stability for generalized stochastic impulsive functional differential equations with delayed impulses and Markovian switching, Nonlinear Analysis: Hybrid Systems, 30 (2018), 199-212.
doi: 10.1016/j.nahs.2018.05.009.![]() ![]() ![]() |
[9] |
J. He and T. Huang, Upper bound for the largest $Z$-eigenvalue of positive tensors, Applied Mathematics Letters, 38 (2014), 110-114.
doi: 10.1016/j.aml.2014.07.012.![]() ![]() ![]() |
[10] |
E. Kofidis and R. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM Journal on Matrix Analysis and Applications, 23 (2002), 863-884.
doi: 10.1137/S0895479801387413.![]() ![]() ![]() |
[11] |
T. Kolda and J. Mayo, Shifted power method for computing tensor eigenpairs, SIAM Journal on Matrix Analysis and Applications, 34 (2011), 1095-1124.
doi: 10.1137/100801482.![]() ![]() ![]() |
[12] |
W. Li and M. Ng, On the Limiting probability distribution of a transition probability tensor, Linear Multilinear Algebra, 62 (2014), 362-385.
doi: 10.1080/03081087.2013.777436.![]() ![]() ![]() |
[13] |
W. Li, D. Liu and S. W. Vong, $Z$-eigenpair bound for an irreducible nonnegative tensor, Linear Algebra and its Applications, 483 (2015), 182-199.
doi: 10.1016/j.laa.2015.05.033.![]() ![]() ![]() |
[14] |
C. Li, F. Wang, J. Zhao, Y. Zhu and Y. Li, Criterions for the positive definiteness of real supersymmetric tensors, Journal of Computational and Applied Mathematics, 255 (2014), 1-14.
doi: 10.1016/j.cam.2013.04.022.![]() ![]() ![]() |
[15] |
C. Li, S. Li, Q. Liu and Y. Li, Exclusion sets in eigenvalue inclusion sets for tensors, arXiv: 1706.00944.
![]() |
[16] |
L. H. Lim, Singular values and eigenvalues of tensors: A variational approach., Proceedings of the IEEE International Workshop on Computational Advances, in Multi-Sensor Adaptive Processing, Puerto Vallarta, (2005), 129–132.
![]() |
[17] |
Q. Liu and Y. Li, Bounds for the $ Z$-eigenpair of general nonnegative tensors, Open Mathematics, 14 (2016), 181-194.
doi: 10.1515/math-2016-0017.![]() ![]() ![]() |
[18] |
M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM Journal on Matrix Analysis and Applications, 31 (2009), 1090-1099.
doi: 10.1137/09074838X.![]() ![]() ![]() |
[19] |
Q. Ni, L. Qi and F. Wang, An eigenvalue method for testing the positive definiteness of a multivariate form, IEEE Transactions on Automatic Control, 53 (2008), 1096-1107.
doi: 10.1109/TAC.2008.923679.![]() ![]() ![]() |
[20] |
L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation, 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007.![]() ![]() ![]() |
[21] |
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, 2017.
doi: 10.1137/1.9781611974751.ch1.![]() ![]() ![]() |
[22] |
C. Sang, A new Brauer-type $ Z$-eigenvalue inclusion set for tensors, Numerical Algorithms, 80 (2019), 781-794.
doi: 10.1007/s11075-018-0506-2.![]() ![]() |
[23] |
Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 1581-1595.
doi: 10.1137/130909135.![]() ![]() ![]() |
[24] |
G. Wang, G. Zhou and L. Caccetta, $Z$-eigenvalue inclusion theorems for tensors, Discrete and Continuous Dynamical Systems Series B, 22 (2017), 187-198.
doi: 10.3934/dcdsb.2017009.![]() ![]() ![]() |
[25] |
G. Wang, G. Zhou and L. Caccetta, Sharp Brauer-type eigenvalue inclusion theorems for tensors, Pacific journal of Optimization, 14 (2018), 227-244.
![]() |
[26] |
G. Wang, Y. Wang and Y. Wang, Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors, Linear and Multilinear Algebra, (2019).
doi: 10.1080/03081087.2018.1561823.![]() ![]() |
[27] |
G. Wang, Y. Wang and L. Liu, Bound estimations on the eigenvalues for Fan product of $M $-tensors, Taiwanese Journal of Mathematics, (2019), 16pp.
doi: 10.11650/tjm/180905.![]() ![]() |
[28] |
Y. Wang and G. Wang, Two S-type $ Z$-eigenvalue inclusion sets for tensors, Journal of Inequalities and Application, 2017 (2017), 1-12.
doi: 10.1186/s13660-017-1428-6.![]() ![]() ![]() |
[29] |
X. Wang, H. Chen and Y. Wang, Solution structures of tensor complementarity problem, Frontiers of Mathematics in China, 13 (2018), 935-945.
doi: 10.1007/s11464-018-0675-2.![]() ![]() ![]() |
[30] |
Y. Wang, G. Zhou and L. Caccetta, Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numerical Linear Algebra with applications, 22 (2015), 1059-1076.
doi: 10.1002/nla.1996.![]() ![]() ![]() |
[31] |
Y. Wang, K. Zhang and H. Sun, Criteria for strong $ H$-tensors, Frontiers of Mathematics in China, 11 (2016), 577-592.
doi: 10.1007/s11464-016-0525-z.![]() ![]() ![]() |
[32] |
Y. Wang, G. Zhou and L. Caccetta, Nonsingular $ H$-tensor and its criteria, Journal of Industrial and Management Optimization, 12 (2016), 1173-1186.
doi: 10.3934/jimo.2016.12.1173.![]() ![]() ![]() |
[33] |
K. Zhang and Y. Wang, An $H $-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, Journal of Computational and Applied Mathematics, 305 (2016), 1-10.
doi: 10.1016/j.cam.2016.03.025.![]() ![]() ![]() |
[34] |
J. Zhao and C. Sang, A new $ Z$-eigenvalue localization set for tensors, Journal of Inequalities and Application, 2017 (2017), 1-9.
doi: 10.1186/s13660-017-1363-6.![]() ![]() ![]() |
[35] |
G. Zhou, G. Wang, L. Qi and M. Alqahtani, A fast algorithm for the spectral radii of weakly reducible nonnegative tensors, Numerical Linear Algebra with applications, 25 (2018), e2134, 10pp.
doi: 10.1002/nla.2134.![]() ![]() ![]() |