-
Previous Article
Cost-sharing strategy for carbon emission reduction and sales effort: A nash game with government subsidy
- JIMO Home
- This Issue
-
Next Article
On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy
$ Z $-eigenvalue exclusion theorems for tensors
School of Management Science, Qufu Normal University, Rizhao, Shandong, China |
To locate all $ Z$-eigenvalues of a tensor more precisely, we establish three $Z$-eigenvalue exclusion sets such that all $ Z$-eigenvalues do not belong to them and get three tighter $Z$-eigenvalue inclusion sets of tensor by using these $Z$-eigenvalue exclusion sets. Furthermore, we show that the new inclusion sets are tighter than the existing results via two running examples.
References:
[1] |
L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, in Medical Image Computing and Computer-Assisted Intervention, Springer, (2008), 1–8.
doi: 10.1007/978-3-540-85988-8_1. |
[2] |
K. Chang, K. Pearson and T. Zhang,
Some variational principles for $Z$-eigenvalues of nonnegative tensors, Linear Algebra and its Applications, 438 (2013), 4166-4182.
doi: 10.1016/j.laa.2013.02.013. |
[3] |
H. Chen, L. Qi and Y. Song,
Column sufficient tensors and tensor complementarity problems, Frontiers of Mathematics in China, 13 (2018), 255-276.
doi: 10.1007/s11464-018-0681-4. |
[4] |
H. Chen, Y. Chen, G. Li and L. Qi, A semi-definite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test, Numerical Linear Algebra with applications, 25 (2018), e2125, 16pp.
doi: 10.1002/nla.2125. |
[5] |
L. De Lathauwer, B. De Moor and J. Vandewalle,
A multilinear singular value decomposition, SIAM Journal on Matrix Analysis and Applications, 21 (2000), 1253-1278.
doi: 10.1137/S0895479896305696. |
[6] |
S. Friedland, S. Gaubert and L. Han,
Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra and its Applications, 438 (2013), 738-749.
doi: 10.1016/j.laa.2011.02.042. |
[7] |
L. Gao, D. Wang and G. Wang,
Further results on exponential stability for impulsive switched nonlinear time-delay systems with delayed impulse effects, Applied Mathematics and Computation, 268 (2015), 186-200.
doi: 10.1016/j.amc.2015.06.023. |
[8] |
L. Gao, D. Wang and G. Zong.,
Exponential stability for generalized stochastic impulsive functional differential equations with delayed impulses and Markovian switching, Nonlinear Analysis: Hybrid Systems, 30 (2018), 199-212.
doi: 10.1016/j.nahs.2018.05.009. |
[9] |
J. He and T. Huang,
Upper bound for the largest $Z$-eigenvalue of positive tensors, Applied Mathematics Letters, 38 (2014), 110-114.
doi: 10.1016/j.aml.2014.07.012. |
[10] |
E. Kofidis and R. Regalia,
On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM Journal on Matrix Analysis and Applications, 23 (2002), 863-884.
doi: 10.1137/S0895479801387413. |
[11] |
T. Kolda and J. Mayo,
Shifted power method for computing tensor eigenpairs, SIAM Journal on Matrix Analysis and Applications, 34 (2011), 1095-1124.
doi: 10.1137/100801482. |
[12] |
W. Li and M. Ng,
On the Limiting probability distribution of a transition probability tensor, Linear Multilinear Algebra, 62 (2014), 362-385.
doi: 10.1080/03081087.2013.777436. |
[13] |
W. Li, D. Liu and S. W. Vong,
$Z$-eigenpair bound for an irreducible nonnegative tensor, Linear Algebra and its Applications, 483 (2015), 182-199.
doi: 10.1016/j.laa.2015.05.033. |
[14] |
C. Li, F. Wang, J. Zhao, Y. Zhu and Y. Li,
Criterions for the positive definiteness of real supersymmetric tensors, Journal of Computational and Applied Mathematics, 255 (2014), 1-14.
doi: 10.1016/j.cam.2013.04.022. |
[15] |
C. Li, S. Li, Q. Liu and Y. Li, Exclusion sets in eigenvalue inclusion sets for tensors, arXiv: 1706.00944. |
[16] |
L. H. Lim, Singular values and eigenvalues of tensors: A variational approach., Proceedings of the IEEE International Workshop on Computational Advances, in Multi-Sensor Adaptive Processing, Puerto Vallarta, (2005), 129–132. |
[17] |
Q. Liu and Y. Li,
Bounds for the $ Z$-eigenpair of general nonnegative tensors, Open Mathematics, 14 (2016), 181-194.
doi: 10.1515/math-2016-0017. |
[18] |
M. Ng, L. Qi and G. Zhou,
Finding the largest eigenvalue of a nonnegative tensor, SIAM Journal on Matrix Analysis and Applications, 31 (2009), 1090-1099.
doi: 10.1137/09074838X. |
[19] |
Q. Ni, L. Qi and F. Wang,
An eigenvalue method for testing the positive definiteness of a multivariate form, IEEE Transactions on Automatic Control, 53 (2008), 1096-1107.
doi: 10.1109/TAC.2008.923679. |
[20] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation, 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[21] |
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, 2017.
doi: 10.1137/1.9781611974751.ch1. |
[22] |
C. Sang,
A new Brauer-type $ Z$-eigenvalue inclusion set for tensors, Numerical Algorithms, 80 (2019), 781-794.
doi: 10.1007/s11075-018-0506-2. |
[23] |
Y. Song and L. Qi,
Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 1581-1595.
doi: 10.1137/130909135. |
[24] |
G. Wang, G. Zhou and L. Caccetta,
$Z$-eigenvalue inclusion theorems for tensors, Discrete and Continuous Dynamical Systems Series B, 22 (2017), 187-198.
doi: 10.3934/dcdsb.2017009. |
[25] |
G. Wang, G. Zhou and L. Caccetta,
Sharp Brauer-type eigenvalue inclusion theorems for tensors, Pacific journal of Optimization, 14 (2018), 227-244.
|
[26] |
G. Wang, Y. Wang and Y. Wang, Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors, Linear and Multilinear Algebra, (2019).
doi: 10.1080/03081087.2018.1561823. |
[27] |
G. Wang, Y. Wang and L. Liu, Bound estimations on the eigenvalues for Fan product of $M $-tensors, Taiwanese Journal of Mathematics, (2019), 16pp.
doi: 10.11650/tjm/180905. |
[28] |
Y. Wang and G. Wang,
Two S-type $ Z$-eigenvalue inclusion sets for tensors, Journal of Inequalities and Application, 2017 (2017), 1-12.
doi: 10.1186/s13660-017-1428-6. |
[29] |
X. Wang, H. Chen and Y. Wang,
Solution structures of tensor complementarity problem, Frontiers of Mathematics in China, 13 (2018), 935-945.
doi: 10.1007/s11464-018-0675-2. |
[30] |
Y. Wang, G. Zhou and L. Caccetta,
Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numerical Linear Algebra with applications, 22 (2015), 1059-1076.
doi: 10.1002/nla.1996. |
[31] |
Y. Wang, K. Zhang and H. Sun,
Criteria for strong $ H$-tensors, Frontiers of Mathematics in China, 11 (2016), 577-592.
doi: 10.1007/s11464-016-0525-z. |
[32] |
Y. Wang, G. Zhou and L. Caccetta,
Nonsingular $ H$-tensor and its criteria, Journal of Industrial and Management Optimization, 12 (2016), 1173-1186.
doi: 10.3934/jimo.2016.12.1173. |
[33] |
K. Zhang and Y. Wang,
An $H $-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, Journal of Computational and Applied Mathematics, 305 (2016), 1-10.
doi: 10.1016/j.cam.2016.03.025. |
[34] |
J. Zhao and C. Sang,
A new $ Z$-eigenvalue localization set for tensors, Journal of Inequalities and Application, 2017 (2017), 1-9.
doi: 10.1186/s13660-017-1363-6. |
[35] |
G. Zhou, G. Wang, L. Qi and M. Alqahtani, A fast algorithm for the spectral radii of weakly reducible nonnegative tensors, Numerical Linear Algebra with applications, 25 (2018), e2134, 10pp.
doi: 10.1002/nla.2134. |
show all references
References:
[1] |
L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, in Medical Image Computing and Computer-Assisted Intervention, Springer, (2008), 1–8.
doi: 10.1007/978-3-540-85988-8_1. |
[2] |
K. Chang, K. Pearson and T. Zhang,
Some variational principles for $Z$-eigenvalues of nonnegative tensors, Linear Algebra and its Applications, 438 (2013), 4166-4182.
doi: 10.1016/j.laa.2013.02.013. |
[3] |
H. Chen, L. Qi and Y. Song,
Column sufficient tensors and tensor complementarity problems, Frontiers of Mathematics in China, 13 (2018), 255-276.
doi: 10.1007/s11464-018-0681-4. |
[4] |
H. Chen, Y. Chen, G. Li and L. Qi, A semi-definite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test, Numerical Linear Algebra with applications, 25 (2018), e2125, 16pp.
doi: 10.1002/nla.2125. |
[5] |
L. De Lathauwer, B. De Moor and J. Vandewalle,
A multilinear singular value decomposition, SIAM Journal on Matrix Analysis and Applications, 21 (2000), 1253-1278.
doi: 10.1137/S0895479896305696. |
[6] |
S. Friedland, S. Gaubert and L. Han,
Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra and its Applications, 438 (2013), 738-749.
doi: 10.1016/j.laa.2011.02.042. |
[7] |
L. Gao, D. Wang and G. Wang,
Further results on exponential stability for impulsive switched nonlinear time-delay systems with delayed impulse effects, Applied Mathematics and Computation, 268 (2015), 186-200.
doi: 10.1016/j.amc.2015.06.023. |
[8] |
L. Gao, D. Wang and G. Zong.,
Exponential stability for generalized stochastic impulsive functional differential equations with delayed impulses and Markovian switching, Nonlinear Analysis: Hybrid Systems, 30 (2018), 199-212.
doi: 10.1016/j.nahs.2018.05.009. |
[9] |
J. He and T. Huang,
Upper bound for the largest $Z$-eigenvalue of positive tensors, Applied Mathematics Letters, 38 (2014), 110-114.
doi: 10.1016/j.aml.2014.07.012. |
[10] |
E. Kofidis and R. Regalia,
On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM Journal on Matrix Analysis and Applications, 23 (2002), 863-884.
doi: 10.1137/S0895479801387413. |
[11] |
T. Kolda and J. Mayo,
Shifted power method for computing tensor eigenpairs, SIAM Journal on Matrix Analysis and Applications, 34 (2011), 1095-1124.
doi: 10.1137/100801482. |
[12] |
W. Li and M. Ng,
On the Limiting probability distribution of a transition probability tensor, Linear Multilinear Algebra, 62 (2014), 362-385.
doi: 10.1080/03081087.2013.777436. |
[13] |
W. Li, D. Liu and S. W. Vong,
$Z$-eigenpair bound for an irreducible nonnegative tensor, Linear Algebra and its Applications, 483 (2015), 182-199.
doi: 10.1016/j.laa.2015.05.033. |
[14] |
C. Li, F. Wang, J. Zhao, Y. Zhu and Y. Li,
Criterions for the positive definiteness of real supersymmetric tensors, Journal of Computational and Applied Mathematics, 255 (2014), 1-14.
doi: 10.1016/j.cam.2013.04.022. |
[15] |
C. Li, S. Li, Q. Liu and Y. Li, Exclusion sets in eigenvalue inclusion sets for tensors, arXiv: 1706.00944. |
[16] |
L. H. Lim, Singular values and eigenvalues of tensors: A variational approach., Proceedings of the IEEE International Workshop on Computational Advances, in Multi-Sensor Adaptive Processing, Puerto Vallarta, (2005), 129–132. |
[17] |
Q. Liu and Y. Li,
Bounds for the $ Z$-eigenpair of general nonnegative tensors, Open Mathematics, 14 (2016), 181-194.
doi: 10.1515/math-2016-0017. |
[18] |
M. Ng, L. Qi and G. Zhou,
Finding the largest eigenvalue of a nonnegative tensor, SIAM Journal on Matrix Analysis and Applications, 31 (2009), 1090-1099.
doi: 10.1137/09074838X. |
[19] |
Q. Ni, L. Qi and F. Wang,
An eigenvalue method for testing the positive definiteness of a multivariate form, IEEE Transactions on Automatic Control, 53 (2008), 1096-1107.
doi: 10.1109/TAC.2008.923679. |
[20] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation, 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[21] |
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, 2017.
doi: 10.1137/1.9781611974751.ch1. |
[22] |
C. Sang,
A new Brauer-type $ Z$-eigenvalue inclusion set for tensors, Numerical Algorithms, 80 (2019), 781-794.
doi: 10.1007/s11075-018-0506-2. |
[23] |
Y. Song and L. Qi,
Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 1581-1595.
doi: 10.1137/130909135. |
[24] |
G. Wang, G. Zhou and L. Caccetta,
$Z$-eigenvalue inclusion theorems for tensors, Discrete and Continuous Dynamical Systems Series B, 22 (2017), 187-198.
doi: 10.3934/dcdsb.2017009. |
[25] |
G. Wang, G. Zhou and L. Caccetta,
Sharp Brauer-type eigenvalue inclusion theorems for tensors, Pacific journal of Optimization, 14 (2018), 227-244.
|
[26] |
G. Wang, Y. Wang and Y. Wang, Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors, Linear and Multilinear Algebra, (2019).
doi: 10.1080/03081087.2018.1561823. |
[27] |
G. Wang, Y. Wang and L. Liu, Bound estimations on the eigenvalues for Fan product of $M $-tensors, Taiwanese Journal of Mathematics, (2019), 16pp.
doi: 10.11650/tjm/180905. |
[28] |
Y. Wang and G. Wang,
Two S-type $ Z$-eigenvalue inclusion sets for tensors, Journal of Inequalities and Application, 2017 (2017), 1-12.
doi: 10.1186/s13660-017-1428-6. |
[29] |
X. Wang, H. Chen and Y. Wang,
Solution structures of tensor complementarity problem, Frontiers of Mathematics in China, 13 (2018), 935-945.
doi: 10.1007/s11464-018-0675-2. |
[30] |
Y. Wang, G. Zhou and L. Caccetta,
Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numerical Linear Algebra with applications, 22 (2015), 1059-1076.
doi: 10.1002/nla.1996. |
[31] |
Y. Wang, K. Zhang and H. Sun,
Criteria for strong $ H$-tensors, Frontiers of Mathematics in China, 11 (2016), 577-592.
doi: 10.1007/s11464-016-0525-z. |
[32] |
Y. Wang, G. Zhou and L. Caccetta,
Nonsingular $ H$-tensor and its criteria, Journal of Industrial and Management Optimization, 12 (2016), 1173-1186.
doi: 10.3934/jimo.2016.12.1173. |
[33] |
K. Zhang and Y. Wang,
An $H $-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, Journal of Computational and Applied Mathematics, 305 (2016), 1-10.
doi: 10.1016/j.cam.2016.03.025. |
[34] |
J. Zhao and C. Sang,
A new $ Z$-eigenvalue localization set for tensors, Journal of Inequalities and Application, 2017 (2017), 1-9.
doi: 10.1186/s13660-017-1363-6. |
[35] |
G. Zhou, G. Wang, L. Qi and M. Alqahtani, A fast algorithm for the spectral radii of weakly reducible nonnegative tensors, Numerical Linear Algebra with applications, 25 (2018), e2134, 10pp.
doi: 10.1002/nla.2134. |
[1] |
Gang Wang, Guanglu Zhou, Louis Caccetta. Z-Eigenvalue Inclusion Theorems for Tensors. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 187-198. doi: 10.3934/dcdsb.2017009 |
[2] |
Jun He, Guangjun Xu, Yanmin Liu. New Z-eigenvalue localization sets for tensors with applications. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2095-2108. doi: 10.3934/jimo.2021058 |
[3] |
Yaotang Li, Suhua Li. Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. Journal of Industrial and Management Optimization, 2019, 15 (2) : 507-516. doi: 10.3934/jimo.2018054 |
[4] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial and Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[5] |
Caili Sang, Zhen Chen. Optimal $ Z $-eigenvalue inclusion intervals of tensors and their applications. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021075 |
[6] |
Yang Xu, Zheng-Hai Huang. Pareto eigenvalue inclusion intervals for tensors. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022035 |
[7] |
Ruixue Zhao, Jinyan Fan. Quadratic tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022073 |
[8] |
Caili Sang, Zhen Chen. $ E $-eigenvalue localization sets for tensors. Journal of Industrial and Management Optimization, 2020, 16 (4) : 2045-2063. doi: 10.3934/jimo.2019042 |
[9] |
Chong Wang, Gang Wang, Lixia Liu. Sharp bounds on the minimum $M$-eigenvalue and strong ellipticity condition of elasticity $Z$-tensors-tensors. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021205 |
[10] |
Jonathan Meddaugh, Brian E. Raines. The structure of limit sets for $\mathbb{Z}^d$ actions. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4765-4780. doi: 10.3934/dcds.2014.34.4765 |
[11] |
Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042 |
[12] |
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Perturbations of nonlinear eigenvalue problems. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1403-1431. doi: 10.3934/cpaa.2019068 |
[13] |
Maria Fărcăşeanu, Mihai Mihăilescu, Denisa Stancu-Dumitru. Perturbed fractional eigenvalue problems. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6243-6255. doi: 10.3934/dcds.2017270 |
[14] |
Ravi P. Agarwal, Kanishka Perera, Zhitao Zhang. On some nonlocal eigenvalue problems. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 707-714. doi: 10.3934/dcdss.2012.5.707 |
[15] |
Wei-Ming Ni, Xuefeng Wang. On the first positive Neumann eigenvalue. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 1-19. doi: 10.3934/dcds.2007.17.1 |
[16] |
Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81. |
[17] |
Fan Wu. Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor. Evolution Equations and Control Theory, 2021, 10 (3) : 511-518. doi: 10.3934/eect.2020078 |
[18] |
Ya Li, ShouQiang Du, YuanYuan Chen. Modified spectral PRP conjugate gradient method for solving tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022, 18 (1) : 157-172. doi: 10.3934/jimo.2020147 |
[19] |
Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure and Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701 |
[20] |
Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]