\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

$ E $-eigenvalue localization sets for tensors

  • * Corresponding author: Zhen Chen

    * Corresponding author: Zhen Chen

This work is supported by National Natural Science Foundation of China (No. 11501141), Science and Technology Projects of Education Department of Guizhou Province (Grant No. KY[2015]352), and Science and Technology Top-notch Talents Support Project of Education Department of Guizhou Province (Grant No. QJHKYZ [2016]066)

Abstract Full Text(HTML) Figure(2) / Table(1) Related Papers Cited by
  • Several existing $Z$-eigenvalue localization sets for tensors are first generalized to $E$-eigenvalue localization sets. And then two tighter $ E$-eigenvalue localization sets for tensors are presented. As applications, a sufficient condition for the positive definiteness of fourth-order real symmetric tensors, a sufficient condition for the positive semi-definiteness of fourth-order real symmetric tensors, and a new upper bound for the $ Z$-spectral radius of weakly symmetric nonnegative tensors are obtained. Finally, numerical examples are given to verify the theoretical results.

    Mathematics Subject Classification: Primary: 15A18, 15A69, 15A72, 15A42.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Comparisons of $ \mathcal{K}(\mathcal{A}) $, $ \mathcal{L}(\mathcal{A}) $, $ \Psi(\mathcal{A}) $, $ \Upsilon(\mathcal{A}) $ and $ \Omega(\mathcal{A}) $.

    Figure 2.  Comparisons of $ \Omega(\mathcal{A}) $ and $ \triangle(\mathcal{A}) $.

    Table 1.  Upper bounds of $ \varrho(\mathcal{A}) $

    Method $ \varrho(\mathcal{A})\leq $
    Theorem 3.1, i.e., Corollary 4.5 of [29] 23.0000
    Theorem 3.3 of [16] 22.8625
    Theorem 3.4 of [35], where $ S=\{3\},\bar{S}=\{1,2\} $ 22.8521
    Theorem 3.2, i.e., Theorem 4.5 of [31] 22.8149
    Theorem 4.7 of [31] 22.7759
    Theorem 2.9 of [23] 22.7217
    Theorem 3.5 of [9] 22.7163
    Theorem 4.6 of [31] 22.6478
    Theorem 6 of [10] 22.6290
    Theorem 3.3, i.e., Theorem 5 of [34] 22.5000
    Theorem 4 of [30], where $ S=\{3\},\bar{S}=\{1,2\} $ 22.4195
    Theorem 3.4, i.e., Theorem 7 of [28] 22.2122
    Theorem 3.5 21.2604
     | Show Table
    DownLoad: CSV
  • [1] A. AmmarF. Chinesta and A. Falcó, On the convergence of a greedy rank-one update algorithm for a class of linear systems, Arch. Comput. Methods Eng., 17 (2010), 473-486.  doi: 10.1007/s11831-010-9048-z.
    [2] B. D. AndersonN. K. Bose and E. I. Jury, Output feedback stabilization and related problems-solutions via decision methods, IEEE Trans. Automat. Control, AC20 (1975), 53-66.  doi: 10.1109/tac.1975.1100846.
    [3] L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function, Med. Image Comput. Comput. Assist. Interv., 5241 (2008), 1–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18979725. doi: 10.1007/978-3-540-85988-8_1.
    [4] N. K. Bose and P. S. Kamt, Algorithm for stability test of multidimensional filters, IEEE Trans. Acoust. Speech Signal Process, 22 (1974), 307-314.  doi: 10.1109/TASSP.1974.1162592.
    [5] N. K. Bose and R. W. Newcomb, Tellegon's theorem and multivariate realizability theory, Int. J. Electron, 36 (1974), 417-425.  doi: 10.1080/00207217408900421.
    [6] K. C. ChangK. J. Pearson and T. Zhang, Some variational principles for $Z$-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182.  doi: 10.1016/j.laa.2013.02.013.
    [7] R. A. Devore and V. N. Temlyakov, Some remarks on greedy algorithms, Adv. comput. Math., 5 (1996), 173-187.  doi: 10.1007/BF02124742.
    [8] A. Falco and A. Nouy, A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach, J. Math. Anal. Appl., 376 (2011), 469-480.  doi: 10.1016/j.jmaa.2010.12.003.
    [9] J. He, Bounds for the largest eigenvalue of nonnegative tensors, J. Comput. Anal. Appl., 20 (2016), 1290-1301. 
    [10] J. HeY. M. LiuH. KeJ. K. Tian and X. Li, Bounds for the $Z$-spectral radius of nonnegative tensors, Springerplus, 5 (2016), 1727.  doi: 10.1186/s40064-016-3338-3.
    [11] J. He and T. Z. Huang, Upper bound for the largest $Z$-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.  doi: 10.1016/j.aml.2014.07.012.
    [12] J. C. Hsu and A. U. Meyer, Modern Control Principles and Applications, The McGraw-Hill Series in Advanced Chemistry McGraw-Hill Book Co., Inc., New York-Toronto-London, 1956.
    [13] E. Kofidis and P. A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.  doi: 10.1137/S0895479801387413.
    [14] T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.  doi: 10.1137/100801482.
    [15] L. D. LathauwerB. D. Moor and J. Vandewalle, On the best rank-1 and rank-($R_1,R_2,\ldots ,R_N $) approximation of higer-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), 1324-1342.  doi: 10.1137/S0895479898346995.
    [16] W. LiD. Liu and S. W. Vong, $Z$-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182-199.  doi: 10.1016/j.laa.2015.05.033.
    [17] C. Li and Y. Li, An eigenvalue localization set for tensors with applications to determine the positive (semi-)definitenss of tensors, Linear Multilinear Algebra, 64 (2016), 587-601.  doi: 10.1080/03081087.2015.1049582.
    [18] C. LiY. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.  doi: 10.1002/nla.1858.
    [19] C. LiZ. Chen and Y. Li, A new eigenvalue inclusion set for tensors and its applications, Linear Algebra Appl., 481 (2015), 36-53.  doi: 10.1016/j.laa.2015.04.023.
    [20] C. LiJ. Zhou and Y. Li, A new Brauer-type eigenvalue localization set for tensors, Linear Multiliear Algebra, 64 (2016), 727-736.  doi: 10.1080/03081087.2015.1119779.
    [21] C. LiA. Jiao and Y. Li, An $S $-type eigenvalue location set for tensors, Linear Algebra Appl., 493 (2016), 469-483.  doi: 10.1016/j.laa.2015.12.018.
    [22] L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005,129–132.
    [23] Q. Liu and Y. Li, Bounds for the $ Z$-eigenpair of general nonnegative tensors, Open Math., 14 (2016), 181-194.  doi: 10.1515/math-2016-0017.
    [24] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.
    [25] L. QiG. Yu and E. X. Wu, Higher order positive semidefinite diffusion tensor imaging, SIAM J. Imaging Sciences, 3 (2010), 416-433.  doi: 10.1137/090755138.
    [26] L. Qi, Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines, J. Symbolic Comput., 41 (2006), 1309-1327.  doi: 10.1016/j.jsc.2006.02.011.
    [27] L. Qi, The best rank-one approximation ratio of a tensor space, SIAM J. Matrix Anal. Appl., 32 (2011), 430-442.  doi: 10.1137/100795802.
    [28] C. Sang, A new Brauer-type $ Z$-eigenvalue inclusion set for tensors, Numer. Algor., (2018), 1–14. doi: 10.1007/s11075-018-0506-2.
    [29] Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595.  doi: 10.1137/130909135.
    [30] Y. Wang and G. Wang, Two $ S$-type $ Z$-eigenvalue inclusion sets for tensors, J. Inequal. Appl., 2017 (2017), Paper No. 152, 12 pp. doi: 10.1186/s13660-017-1428-6.
    [31] G. WangG. L. Zhou and L. Caccetta, $Z$-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst., Ser. B., 22 (2017), 187-198.  doi: 10.3934/dcdsb.2017009.
    [32] Y. Wang and L. Qi, On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors, Numer. Linear Algebra Appl., 14 (2007), 503-519.  doi: 10.1002/nla.537.
    [33] T. Zhang and G. H. Golub, Rank-one approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 534-550.  doi: 10.1137/S0895479899352045.
    [34] J. Zhao, A new $ Z$-eigenvalue localization set for tensors, J. Inequal. Appl., 2017 (2017), Paper No. 85, 9 pp. doi: 10.1186/s13660-017-1363-6.
    [35] J. Zhao and C. Sang, Two new eigenvalue localization sets for tensors and theirs applications, Open Math., 15 (2017), 1267-1276.  doi: 10.1515/math-2017-0106.
  • 加载中

Figures(2)

Tables(1)

SHARE

Article Metrics

HTML views(1099) PDF downloads(276) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return