\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A low-dimensional SDP relaxation based spatial branch and bound method for nonconvex quadratic programs

  • * Corresponding author: Zhibin Deng

    * Corresponding author: Zhibin Deng
Abstract Full Text(HTML) Figure(0) / Table(4) Related Papers Cited by
  • In this paper, we propose a novel low-dimensional semidefinite programming (SDP) relaxation for convex quadratically constrained nonconvex quadratic programming problems. This new relaxation is derived by simultaneous matrix diagonalization method under the difference of convex decomposition scheme. The highlight of the relaxation is the low dimensionality of the positive semidefinite constraint, which only depends on the number of negative eigenvalues in the objective function. We prove that a mixed SOCP and SDP relaxation appeared in the literature is equivalent to the proposed relaxation, while the proposed relaxation has fewer constraints. We also provide conditions under which the proposed relaxation is as tight as the classical SDP relaxation and provides an optimal value for the original problem. For general cases, a spatial branch-and-bound algorithm is designed for finding a global optimal solution. Extensive numerical experiments support that the proposed algorithm outperforms two cutting-edge algorithms when the problem size is medium or large and the number of negative eigenvalues in the nonconvex objective function is relatively small.

    Mathematics Subject Classification: Primary: 90C26, 90C34.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Algorithm 1 A Spatial Branch-and-Bound Algorithm for Solving (QCQP)
    Require: An instance of (QCQP) and a given error tolerance $ \epsilon>0 $. Set iteration step $ p=1 $.
     1: Solve (wj-Bound}) for $ l^0 $ and $ u^0 $.
     2: If (wj-Bound) is infeasible, then
     3:      (QCQP) is infeasible and terminate.
     4: end if
     5: Solve (LowSDP) with $ [l^0, u^0] $ for its optimal value $ {lb}^0 $ and optimal solution $ (w^0,v^0,W^0) $. Let $ U^*=f\Big(F \begin{bmatrix} {w^{0}} \\ {v^{0}} \end{bmatrix}\Big) $ and $ x^*=F \begin{bmatrix} {w^{0}} \\{v^{0}} \end{bmatrix} $.
     6: Construct a set $ \mathcal{D} $ and insert $ \{w^0,v^0,W^0,lb^0,l^0,u^0\} $ into it.
     7: loop
     8:      If $ \mathcal{D}= \emptyset $, then
     9:          return $ (x^*,U^*) $ and terminate.
    10:      end if
    11:      Choose a problem from $ \mathcal{D} $ using the node selection strategy, denoted as $ \{w^p,v^p,W^p,lb^p,l^p,u^p\} $ such that $ lb^p=\min\{lb^k|lb^k \in \mathcal{D}\} $. Delete it from $ \mathcal{D} $.
    12:      if $ U^*-lb^p \leq \varepsilon $, then
    13:          return $ (x^*,U^*) $ and terminate.
    14:      end if
    15:      Set $ p\leftarrow p+1 $.
    16:      Choose $ j^* $ by the variable selection strategy.
    17:      Set $ l^a=l^p $, $ u^a=u^p $, $ u_{j^*}^a=\frac{l_{j^*}^p+u_{j^*}^p}{2} $, $ l^b=l^p $, $ u^b=u^p $, $ l_{j^*}^b=\frac{l_{j^*}^p+u_{j^*}^p}{2}. $
    18:      if (LowSDP) with $ [l^a, u^a] $ is feasible, then
    19:          Solve (LowSDP) with $ [l^a, u^a] $ for its optimal value $ {lb}^a $ and optimal solution $ (w^a,v^a,W^a) $ and denote $ ub^a=f\Big(F \begin{bmatrix} {w^{a}} \\{v^{a}} \end{bmatrix}\Big) $.
    20:        if $ ub^a < U^* $, then
    21:            $ U^*=ub^a $ and $ x^*=F \begin{bmatrix}{w^{a}} \\{v^{a}} \end{bmatrix} $.
    22:        end if
    23:        if $ U^*-lb^a > \varepsilon $, then
    24:            insert $ \{w^a,v^a,W^a,{lb}^a,l^a,u^a\} $ into $ \mathcal{D} $.
    25:        end if
    26:      end if
    27:      if (LowSDP) with $ [l^b, u^b] $ is feasible, then
    28:          Solve (LowSDP) with $ [l^b, u^b] $ for its optimal value $ {lb}^b $ and optimal solution $ (w^b,v^b,W^b) $ and denote $ ub^b=f\Big(F \begin{bmatrix} {w^{b}} \\ {v^{b}} \end{bmatrix}\Big) $.
    29:        If $ ub^b < U^* $, then
    30:            $ U^*=ub^b $ and $ x^*=F \begin{bmatrix}{w^{b}} \\ {v^{b}} \end{bmatrix} $.
    31:        end if
    32:        if $ U^*-lb^b > \varepsilon $, then
    33:            insert $ \{w^b,v^b,W^b,{lb}^b,l^b,u^b\} $ into $ \mathcal{D} $.
    34:        end if
    35:      end if
    36: end loop
     | Show Table
    DownLoad: CSV

    Table 1.  Comparison of lower bounds and CPU times for solving (LowSDP) and (SOCP-SDP)

    (LowSDP) (SOCP-SDP)
    ($ n $, $ m $, $ r $) lower bound CPU(sec) lower bound CPU(sec)
    (100, 5, 33) -17.2771 0.8881 -17.2771 2.5127
    (200, 5, 66) -24.3489 5.3022 -24.3489 20.3933
    (300, 5,100) -28.5893 15.4098 -28.5893 74.1433
    (400, 5,133) -34.9650 39.3298 -34.9650 211.8385
    (500, 5,166) -38.3098 64.6529 -38.3098 549.5897
    (100, 10, 33) -17.4904 1.5154 -17.4904 2.7576
    (200, 10, 66) -23.9473 8.8909 -23.9473 16.6288
    (300, 10,100) -30.1268 29.9709 -30.1268 57.2365
    (400, 10,133) -34.3719 69.1769 -34.3719 315.4569
    (100, 10, 25) -16.7852 1.2385 -16.7852 2.1822
    (200, 10, 50) -23.2197 8.2397 -23.2220 15.3132
    (300, 10, 75) -28.7501 22.8818 -28.7501 48.2711
    (400, 10,100) -32.9298 53.9278 -32.9697 279.6444
     | Show Table
    DownLoad: CSV

    Table 2.  Comparisons on trust-region problems with linear inequality constraints

    Proposed Algorithm ED Algorithm BW Algorithm
    ($ n $, $ m $, $ r $) aver iter aver CPU std aver iter aver CPU std aver iter aver CPU std
    (100, 2, 33) 9.7 6.6 0.6 9.5 21.2 3.5 17.1 14.8 4.6
    (150, 2, 50) 10.5 16.1 1.5 10.5 81.3 13.7 44.2 86.5 175.0
    (200, 2, 66) 9.6 37.3 2.2 9.0 213.0 62.7 36.5 133.2 190.6
    (100, 6, 33) 10.2 6.8 0.6 10.1 24.5 3.4 182.1 200.2 270.6
    $ r=\lfloor \frac{n}{3}\rfloor $ (150, 6, 50) 8.8 17.2 1.7 8.4 70.9 20.3 67.4 158.5 184.0
    (200, 6, 66) 9.3 36.5 2.7 9.3 237.1 52.4 76.2 426.2 1077.7
    (100, 10, 33) 10.1 7.1 0.9 10.0 22.3 4.5 124.6 113.7 119.7
    (150, 10, 50) 10.4 17.7 2.0 10.1 78.1 17.5 569.7 1583.9 4553.0
    (200, 10, 66) 9.5 36.2 6.1 9.3 186.4 69.3 308.0 1336.0 2984.3
    (100, 2, 50) 8.9 8.7 1.6 8.8 27.0 9.6 36.2 33.6 63.8
    (150, 2, 75) 9.6 24.5 2.7 9.7 117.6 15.7 58.6 143.4 229.4
    (200, 2,100) 8.6 43.7 7.8 8.0 266.4 120.1 96.6 449.7 1238.3
    (100, 6, 50) 9.8 9.7 2.5 10.0 36.6 13.7 148.3 168.2 209.7
    $ r=\lfloor \frac{n}{2}\rfloor $ (150, 6, 75) 9.6 22.0 3.7 9.7 108.7 29.5 98.2 198.4 308.4
    (200, 6,100) 9.3 53.1 5.2 9.3 273.1 35.1 41.8 185.7 343.4
    (100, 10, 50) 10.2 9.9 0.3 10.2 35.1 2.5 81.9 82.0 114.5
    (150, 10, 75) 9.0 23.4 4.2 8.9 108.7 38.4 82.5 181.1 341.5
    (200, 10,100) 9.3 46.3 8.0 9.1 297.4 105.6 150.4 833.7 2204.1
    (100, 2, 66) 9.5 11.8 0.9 9.4 38.6 5.0 15.3 12.3 4.5
    (150, 2,100) 6.3 21.8 6.5 6.4 94.3 56.5 12.8 23.0 12.5
    (200, 2,133) 9.3 56.3 4.1 9.4 374.6 69.7 81.3 308.6 483.7
    (100, 6, 66) 9.8 12.6 0.9 9.8 39.9 3.6 64.8 62.5 144.1
    $ r=\lfloor \frac{2n}{3}\rfloor $ (150, 6,100) 9.8 30.1 2.5 9.7 152.7 22.0 21.4 40.3 24.2
    (200, 6,133) 9.6 61.4 5.0 9.6 399.9 44.8 64.5 241.5 527.6
    (100, 10, 66) 9.8 13.5 1.0 9.8 41.5 4.2 92.8 94.0 131.4
    (150, 10,100) 8.9 30.4 5.2 9.0 143.2 45.6 15.4 30.0 13.0
    (200, 10,133) 8.1 61.1 9.2 8.1 351.0 121.1 23.4 84.4 40.4
     | Show Table
    DownLoad: CSV

    Table 3.  Comparisons on generalized CDT problem

    Proposed algorithm ED Algorithm BW Algorithm
    ($ n $, $ m $, $ r $) aver iter aver CPU std aver iter aver CPU std aver iter aver CPU std
    (100, 2, 33) 10.8 10.8 1.1 10.7 24.8 3.8 132.8 154.0 102.2
    (150, 2, 50) 9.5 29.0 1.6 9.5 81.9 6.7 55.9 163.1 197.1
    (200, 2, 66) 9.4 62.1 6.2 9.3 199.4 32.9 52.5 235.3 227.5
    (100, 3, 33) 10.9 17.3 2.0 9.6 24.3 6.9 86.1 114.0 187.5
    (150, 3, 50) 11.8 60.5 5.6 10.5 99.9 14.9 65.8 221.9 244.6
    (200, 3, 66) 12.1 125.0 42.8 11.6 257.0 131.5 125.3 637.5 1103.2
    $ r = \lfloor \frac{n}{3}\rfloor $ (100, 4, 33) 12.1 28.2 7.2 11.7 32.8 9.5 270.1 355.3 431.9
    (150, 4, 50) 9.9 76.2 6.6 9.2 90.6 12.5 34.6 175.9 168.3
    (200, 4, 66) 11.1 233.4 36.8 10.3 284.6 69.4 345.1 2594.1 6676.9
    (100, 5, 33) 11.0 41.6 4.7 10.3 42.0 4.9 72.7 117.9 139.5
    (150, 5, 50) 10.9 138.3 21.5 10.5 129.8 10.5 74.8 371.2 507.1
    (200, 5, 66) 10.9 345.3 60.5 10.8 344.1 68.4 96.8 904.7 1064.0
    (100, 2, 50) 10.4 14.5 2.3 10.3 36.1 7.9 129.5 181.4 147.0
    (150, 2, 75) 10.0 41.0 3.8 10.0 130.9 18.4 52.0 153.9 218.3
    (200, 2,100) 10.6 89.9 11.6 10.2 331.4 73.7 30.2 146.6 55.8
    (100, 3, 50) 9.8 22.7 1.2 9.8 40.4 2.9 22.8 35.1 34.9
    (150, 3, 75) 9.9 65.4 6.4 9.8 131.6 22.7 33.2 112.5 142.5
    (200, 3,100) 9.9 158.1 4.9 9.9 366.5 32.1 48.6 371.6 393.2
    $ r = \lfloor \frac{n}{2}\rfloor $ (100, 4, 50) 9.4 36.3 5.0 9.0 40.0 5.9 48.0 75.1 103.9
    (150, 4, 75) 12.5 131.6 33.0 10.4 153.7 46.8 211.4 841.7 1729.6
    (200, 4,100) 10.2 249.1 17.8 9.7 398.9 56.8 139.2 1049.6 1096.1
    (100, 5, 50) 9.7 49.0 5.7 9.4 47.3 6.0 42.7 72.3 96.1
    (150, 5, 75) 10.4 148.4 11.5 9.6 174.1 15.9 107.0 434.8 427.6
    (200, 5,100) 10.3 479.0 38.6 9.8 550.5 59.2 101.1 931.0 830.7
    (100, 2, 66) 10.3 19.3 2.5 10.1 42.9 8.7 146.1 168.6 181.7
    (150, 2,100) 13.4 60.1 28.1 10.0 157.0 28.9 76.8 198.9 264.0
    (200, 2,133) 10.6 110.6 7.4 10.6 465.5 53.3 105.0 519.6 876.1
    (100, 3, 66) 9.7 25.9 2.5 9.2 42.7 6.6 146.4 179.5 399.1
    (150, 3,100) 9.6 77.3 8.8 9.5 166.7 37.3 60.4 198.0 287.0
    (200, 3,133) 10.0 181.9 9.0 9.3 453.2 67.2 114.1 658.1 1102.6
    $ r = \lfloor \frac{2n}{3}\rfloor $ (100, 4, 66) 10.1 39.1 3.5 9.5 50.2 5.0 59.0 101.3 132.1
    (150, 4,100) 10.2 128.5 10.3 9.8 204.7 26.5 91.3 337.7 430.5
    (200, 4,133) 10.7 341.6 45.8 10.4 575.1 95.7 243.8 1497.5 1597.9
    (100, 5, 66) 11.1 59.2 9.5 10.7 62.9 11.6 400.7 523.1 862.5
    (150, 5,100) 9.6 181.1 12.0 9.5 224.3 27.6 113.2 443.2 546.9
    (200, 5,133) 9.7 476.0 30.9 9.6 612.3 72.8 75.2 699.2 589.2
     | Show Table
    DownLoad: CSV
  • [1] K. Anstreicher, Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming, Journal of Global Optimization, 43 (2009), 471-484.  doi: 10.1007/s10898-008-9372-0.
    [2] A. Ben-Tal and D. Hertog, Hidden conic quadratic representation of some nonconvex quadratic optimization problems, Mathematical Programming, 143 (2014), 1-29.  doi: 10.1007/s10107-013-0710-8.
    [3] Ø. Bergmann and T. Steihaug, Solving trust-region subproblem augmented with linear inequality constraints, Optimization Methods and Software, 28 (2013), 26-36.  doi: 10.1080/10556788.2011.582501.
    [4] D. Bienstock, A note on polynomial solvability of the CDT problem, SIAM Journal on Optimization, 26 (2016), 488-498.  doi: 10.1137/15M1009871.
    [5] I. M. BomzeM. Locatelli and F. Tardella, New and old bounds for standard quadratic optimization: Dominance, equivalence and incomparability, Mathematical Programming, 115 (2008), 31-64.  doi: 10.1007/s10107-007-0138-0.
    [6] I. M. Bomze and M. L. Overton, Narrowing the difficulty gap for the Celis-Dennis-Tapia problem, Mathematical Programming, 151 (2015), 459-476.  doi: 10.1007/s10107-014-0836-3.
    [7] C. Buchheim and A. Wiegele, Semidefinite relaxations for non-convex quadratic mixed-integer programming, Mathematical Programming, 141 (2013), 435-452.  doi: 10.1007/s10107-012-0534-y.
    [8] S. BurerS. Kim and M. Kojima, Faster, but weaker, relaxations for quadratically constrained quadratic programs, Computational Optimization and Applications, 59 (2014), 27-45.  doi: 10.1007/s10589-013-9618-8.
    [9] S. Burer and B. Yang, The trust region subproblem with non-intersecting linear constraints, Mathematical Programming, 149 (2015), 253-264.  doi: 10.1007/s10107-014-0749-1.
    [10] J. Chen and S. Burer, Globally solving nonconvex quadratic programming problems via completely positive programming, Mathematical Programming Computation, 4 (2012), 33-52.  doi: 10.1007/s12532-011-0033-9.
    [11] J. Dai, S.-C. Fang and W. Xing, Recovering optimal solutions via SOC-SDP relaxation of trust region subproblem with nonintersecting linear constraints, Journal of Industrial and Management Optimization, (2018). doi: 10.3934/jimo.2018117.
    [12] Z. DengS.-C. FangQ. Jin and C. Lu, Conic approximation to nonconvex quadratic programming with convex quadratic constraints, Journal of Global Optimization, 61 (2015), 459-478.  doi: 10.1007/s10898-014-0195-x.
    [13] D. Y. Gao, Solutions and optimality criteria to box constrained nonconvex minimization problems, Journal of Industrial and Management Optimization, 3 (2007), 293-304.  doi: 10.3934/jimo.2007.3.293.
    [14] V. Jeyakumar and G. Y. Li, Trust-region problems with linear inequality constraints: Exact SDP relaxation, global optimality and robust optimization, Mathematical Programming, 147 (2014), 171-206.  doi: 10.1007/s10107-013-0716-2.
    [15] S. Kim and M. Kojima, Second order cone programming relaxation of nonconvex quadratic optimization problems, Optimization Methods and Software, 15 (2001), 201-224.  doi: 10.1080/10556780108805819.
    [16] C. LuZ. Deng and Q. Jin, An eigenvalue decomposition based branch-and-bound algorithm for nonconvex quadratic programming problems with convex quadratic constraints, Journal of Global Optimization, 67 (2017), 475-493.  doi: 10.1007/s10898-016-0436-2.
    [17] Z. Q. LuoW. K. MaA. M. C. SoY. Ye and S. Zhang, Semidefinite relaxation of quadratic optimization problems, IEEE Signal Processing Magazine, 27 (2010), 20-34.  doi: 10.1109/MSP.2010.936019.
    [18] P. M. Pardalos and S. A. Vavasis, Quadratic programming with one negative eigenvalue is NP-hard, Journal of Global Optimization, 1 (1991), 15-22.  doi: 10.1007/BF00120662.
    [19] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, 11/12 (1999), 625-653.  doi: 10.1080/10556789908805766.
    [20] J. F. Sturm and S. Zhang, On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246-267.  doi: 10.1287/moor.28.2.246.14485.
    [21] J. WangJ. Lu and Y. Feng, Congruence diagonalization of two Hermite matrices simultaneously, International Journal of Algebra, 4 (2010), 1119-1125. 
    [22] X. ZhengX. Sun and D. Li, Nonconvex quadratically constrained quadratic programming: Best DC decompositions and their SDP representations, Journal of Global Optimization, 50 (2011), 695-712.  doi: 10.1007/s10898-010-9630-9.
    [23] J. ZhouZ. DengS.-C. Fang and W. Xing, Detection of a copositive matrix over a p-th order cone, Pacific Journal of Optimization, 10 (2014), 593-611. 
    [24] J. ZhouS.-C. Fang and W. Xing, Conic approximation to quadratic optimization with linear complementarity constraints, Computational Optimization and Applications, 66 (2017), 97-122.  doi: 10.1007/s10589-016-9855-8.
    [25] J. Zhou and Z. Xu, A simultaneous diagonalization based SOCP relaxation for convex quadratic programs with linear complementarity constraints, Optimization Letters, (2018). doi: 10.1007/s11590-018-1337-8.
  • 加载中

Tables(4)

SHARE

Article Metrics

HTML views(1294) PDF downloads(524) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return