[1]
|
K. Anstreicher, Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming, Journal of Global Optimization, 43 (2009), 471-484.
doi: 10.1007/s10898-008-9372-0.
|
[2]
|
A. Ben-Tal and D. Hertog, Hidden conic quadratic representation of some nonconvex quadratic optimization problems, Mathematical Programming, 143 (2014), 1-29.
doi: 10.1007/s10107-013-0710-8.
|
[3]
|
Ø. Bergmann and T. Steihaug, Solving trust-region subproblem augmented with linear inequality constraints, Optimization Methods and Software, 28 (2013), 26-36.
doi: 10.1080/10556788.2011.582501.
|
[4]
|
D. Bienstock, A note on polynomial solvability of the CDT problem, SIAM Journal on Optimization, 26 (2016), 488-498.
doi: 10.1137/15M1009871.
|
[5]
|
I. M. Bomze, M. Locatelli and F. Tardella, New and old bounds for standard quadratic optimization: Dominance, equivalence and incomparability, Mathematical Programming, 115 (2008), 31-64.
doi: 10.1007/s10107-007-0138-0.
|
[6]
|
I. M. Bomze and M. L. Overton, Narrowing the difficulty gap for the Celis-Dennis-Tapia problem, Mathematical Programming, 151 (2015), 459-476.
doi: 10.1007/s10107-014-0836-3.
|
[7]
|
C. Buchheim and A. Wiegele, Semidefinite relaxations for non-convex quadratic mixed-integer programming, Mathematical Programming, 141 (2013), 435-452.
doi: 10.1007/s10107-012-0534-y.
|
[8]
|
S. Burer, S. Kim and M. Kojima, Faster, but weaker, relaxations for quadratically constrained quadratic programs, Computational Optimization and Applications, 59 (2014), 27-45.
doi: 10.1007/s10589-013-9618-8.
|
[9]
|
S. Burer and B. Yang, The trust region subproblem with non-intersecting linear constraints, Mathematical Programming, 149 (2015), 253-264.
doi: 10.1007/s10107-014-0749-1.
|
[10]
|
J. Chen and S. Burer, Globally solving nonconvex quadratic programming problems via completely positive programming, Mathematical Programming Computation, 4 (2012), 33-52.
doi: 10.1007/s12532-011-0033-9.
|
[11]
|
J. Dai, S.-C. Fang and W. Xing, Recovering optimal solutions via SOC-SDP relaxation of trust region subproblem with nonintersecting linear constraints, Journal of Industrial and Management Optimization, (2018).
doi: 10.3934/jimo.2018117.
|
[12]
|
Z. Deng, S.-C. Fang, Q. Jin and C. Lu, Conic approximation to nonconvex quadratic programming with convex quadratic constraints, Journal of Global Optimization, 61 (2015), 459-478.
doi: 10.1007/s10898-014-0195-x.
|
[13]
|
D. Y. Gao, Solutions and optimality criteria to box constrained nonconvex minimization problems, Journal of Industrial and Management Optimization, 3 (2007), 293-304.
doi: 10.3934/jimo.2007.3.293.
|
[14]
|
V. Jeyakumar and G. Y. Li, Trust-region problems with linear inequality constraints: Exact SDP relaxation, global optimality and robust optimization, Mathematical Programming, 147 (2014), 171-206.
doi: 10.1007/s10107-013-0716-2.
|
[15]
|
S. Kim and M. Kojima, Second order cone programming relaxation of nonconvex quadratic optimization problems, Optimization Methods and Software, 15 (2001), 201-224.
doi: 10.1080/10556780108805819.
|
[16]
|
C. Lu, Z. Deng and Q. Jin, An eigenvalue decomposition based branch-and-bound algorithm for nonconvex quadratic programming problems with convex quadratic constraints, Journal of Global Optimization, 67 (2017), 475-493.
doi: 10.1007/s10898-016-0436-2.
|
[17]
|
Z. Q. Luo, W. K. Ma, A. M. C. So, Y. Ye and S. Zhang, Semidefinite relaxation of quadratic optimization problems, IEEE Signal Processing Magazine, 27 (2010), 20-34.
doi: 10.1109/MSP.2010.936019.
|
[18]
|
P. M. Pardalos and S. A. Vavasis, Quadratic programming with one negative eigenvalue is NP-hard, Journal of Global Optimization, 1 (1991), 15-22.
doi: 10.1007/BF00120662.
|
[19]
|
J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, 11/12 (1999), 625-653.
doi: 10.1080/10556789908805766.
|
[20]
|
J. F. Sturm and S. Zhang, On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246-267.
doi: 10.1287/moor.28.2.246.14485.
|
[21]
|
J. Wang, J. Lu and Y. Feng, Congruence diagonalization of two Hermite matrices simultaneously, International Journal of Algebra, 4 (2010), 1119-1125.
|
[22]
|
X. Zheng, X. Sun and D. Li, Nonconvex quadratically constrained quadratic programming: Best DC decompositions and their SDP representations, Journal of Global Optimization, 50 (2011), 695-712.
doi: 10.1007/s10898-010-9630-9.
|
[23]
|
J. Zhou, Z. Deng, S.-C. Fang and W. Xing, Detection of a copositive matrix over a p-th order cone, Pacific Journal of Optimization, 10 (2014), 593-611.
|
[24]
|
J. Zhou, S.-C. Fang and W. Xing, Conic approximation to quadratic optimization with linear complementarity constraints, Computational Optimization and Applications, 66 (2017), 97-122.
doi: 10.1007/s10589-016-9855-8.
|
[25]
|
J. Zhou and Z. Xu, A simultaneous diagonalization based SOCP relaxation for convex quadratic programs with linear complementarity constraints, Optimization Letters, (2018).
doi: 10.1007/s11590-018-1337-8.
|