September  2020, 16(5): 2159-2173. doi: 10.3934/jimo.2019048

Strategic inventory under suppliers competition

School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, 611731, China

* Corresponding author: Xingzheng Ai

Received  March 2018 Revised  November 2018 Published  May 2019

This paper investigates the impact of competition and the strategic inventories on the performance of a supply chain comprising two competing suppliers and one retailer. Existing literature has shown that the retailer's optimal strategy in equilibrium is to carry inventories, and the suppliers are unable to prevent this. In contrast, our results show that the suppliers will prevent the retailer from carrying strategic inventories when the degree of competition between suppliers is high, and the retailer's carrying strategic inventory is not necessary to force suppliers to lower the future wholesale price. We also find the substitutable relationship between the effect of strategic inventories and the effect of competition. When the degree of competition increases, the suppliers are worse off but the retailer and the total supply chain are both better off when carrying strategic inventories. The retailer could introduce profit sharing contracts so as to encourage suppliers to support strategic inventories which enhance the entire performance of the supply chain.

Citation: Ganfu Wang, Xingzheng Ai, Chen Zheng, Li Zhong. Strategic inventory under suppliers competition. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2159-2173. doi: 10.3934/jimo.2019048
References:
[1]

K. AnandR. Anupindi and Y. Bassok, Strategic inventories in vertical contracts, Management Science, 54 (2008), 1792-1804.   Google Scholar

[2]

A. AryaH. Frimor and B. Mittendorf, Decentralized procurement in light of strategic inventories, Management Science, 61 (2015), 487-705.  doi: 10.1287/mnsc.2014.1908.  Google Scholar

[3]

A. Arya and B. Mittendorf, Managing strategic inventories via supplier-to-consumer rebates, Management Science, 59 (2013), 813-818.   Google Scholar

[4]

G. P. Cachon, Supply chain coordination with contracts, A. G. des Kok, S. C. Graves. Eds, Supply chain management: design, coordination and operation, Esevier, Amsterdam, (2003), 223–339. Google Scholar

[5]

S. C. Choi, Price competition in a channel structure with a common retailer, Marketing Science, 10 (1991), 271-358.  doi: 10.1287/mksc.10.4.271.  Google Scholar

[6]

Fr. Fitzroy and K. Kraft, Cooperation, productivity, and profit sharing, Quarterly Journal of Economics, 102 (1987), 23-35.  doi: 10.2307/1884678.  Google Scholar

[7]

O. ForosK. P. Hagen and H. J. Kind, Price-dependent profit sharing as a channel coordination device, Management Science, 55 (2009), 1280-1291.   Google Scholar

[8]

R. HartwigK. InderfurthA. Sadrieh and G. Voigt, Strategic inventory and supply chain behavior, Production and Operations Management, 24 (2015), 1329-1345.  doi: 10.1111/poms.12325.  Google Scholar

[9]

B. Mantin and L. Jiang, Strategic inventories with quality deterioration, European Journal of Operational Research, 258 (2017), 155-164.  doi: 10.1016/j.ejor.2016.08.062.  Google Scholar

[10]

J. J. Rotmeberg and G. Saloner, Cyclical behavior of strategic inventories, Quart. J. Econom., 104 (1989), 73-97.   Google Scholar

[11]

G. Saloner, The role of obsolescence and inventory costs in providing commitment, Internat. J. Indust. Organ., 4 (1986), 333-345.  doi: 10.1016/0167-7187(86)90025-1.  Google Scholar

[12]

W. ShangAY. Ha and S. Tong, Information sharing in a supply chain with a common retailer, Management Science, 62 (2016), 1-301.  doi: 10.1287/mnsc.2014.2127.  Google Scholar

show all references

References:
[1]

K. AnandR. Anupindi and Y. Bassok, Strategic inventories in vertical contracts, Management Science, 54 (2008), 1792-1804.   Google Scholar

[2]

A. AryaH. Frimor and B. Mittendorf, Decentralized procurement in light of strategic inventories, Management Science, 61 (2015), 487-705.  doi: 10.1287/mnsc.2014.1908.  Google Scholar

[3]

A. Arya and B. Mittendorf, Managing strategic inventories via supplier-to-consumer rebates, Management Science, 59 (2013), 813-818.   Google Scholar

[4]

G. P. Cachon, Supply chain coordination with contracts, A. G. des Kok, S. C. Graves. Eds, Supply chain management: design, coordination and operation, Esevier, Amsterdam, (2003), 223–339. Google Scholar

[5]

S. C. Choi, Price competition in a channel structure with a common retailer, Marketing Science, 10 (1991), 271-358.  doi: 10.1287/mksc.10.4.271.  Google Scholar

[6]

Fr. Fitzroy and K. Kraft, Cooperation, productivity, and profit sharing, Quarterly Journal of Economics, 102 (1987), 23-35.  doi: 10.2307/1884678.  Google Scholar

[7]

O. ForosK. P. Hagen and H. J. Kind, Price-dependent profit sharing as a channel coordination device, Management Science, 55 (2009), 1280-1291.   Google Scholar

[8]

R. HartwigK. InderfurthA. Sadrieh and G. Voigt, Strategic inventory and supply chain behavior, Production and Operations Management, 24 (2015), 1329-1345.  doi: 10.1111/poms.12325.  Google Scholar

[9]

B. Mantin and L. Jiang, Strategic inventories with quality deterioration, European Journal of Operational Research, 258 (2017), 155-164.  doi: 10.1016/j.ejor.2016.08.062.  Google Scholar

[10]

J. J. Rotmeberg and G. Saloner, Cyclical behavior of strategic inventories, Quart. J. Econom., 104 (1989), 73-97.   Google Scholar

[11]

G. Saloner, The role of obsolescence and inventory costs in providing commitment, Internat. J. Indust. Organ., 4 (1986), 333-345.  doi: 10.1016/0167-7187(86)90025-1.  Google Scholar

[12]

W. ShangAY. Ha and S. Tong, Information sharing in a supply chain with a common retailer, Management Science, 62 (2016), 1-301.  doi: 10.1287/mnsc.2014.2127.  Google Scholar

Figure 1.  The relationship between $ r $ and $ h_{0} $ when $ a = 10 $
Figure 2.  The relationship between $ r $ and $ I^{i} $ when $ a = 10, h = 0.5 $
Figure 3.  the relationship $ h $ and $ r $ with $ a = 1 $
Figure 4.  Improvement performance
Figure 5.  the relationship between $ \beta $ and $ r $ with $ a = 10, h = 0.2 $
Table 1.  The Equilibrium Outcome
The Dynamic ContractThe Commitment Contract
$\left( {w_{1}^{\ast } , w_{2}^{\ast } } \right)$ $\left( {\begin{array}{l} \dfrac{2a(3-r)^{2}(3-2r-r^{2})-h(12-24r+9r^{2}+2r^{3}-r^{4})}{102-81r+9r^{2}+8r^{3}-2r^{4}}, \\ \dfrac{(2-r)(2a(3-r)(1-r)(3+r)+h(30-r(9+(3-r)r)))}{102-81r+9r^{2}+8r^{3}-2r^{4}}\end{array}} \right)$ $\left( {\dfrac{a(1-r)}{2-r}, \dfrac{a(1-r)}{2-r}} \right)$
$\left( {p_{1}^{\ast } , p_{2}^{\ast } } \right)$ $\left( {\begin{array}{l} \dfrac{a(156-153r+21r^{2}+16r^{3}-4r^{4})-h(2-r)(6-9r+r^{3})}{2(102-81r+9r^{2}+8r^{3}-2r^{4})}, \\ \dfrac{a(138-r(135-r(23+2r(7-2r)))) +h(2-r)(30-r(9+(3-r)r))}{2(102-81r+9r^{2}+8r^{3}-2r^{4})} \end{array}} \right)$ $\left( {\dfrac{a}{2(2-r)}, \dfrac{a}{2(2-r)}} \right)$
$I^{{\rm \ast }}$ $\dfrac{a(30-39r+8r^{2}+r^{3})-h(2-r)^{2}(30-9r-3r^{2}+r^{3})}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})}$ 0
$\left( {Q_{1}^{\ast } , Q_{2}^{\ast } } \right)$ $\left( {\begin{array}{l} \dfrac{2a(1-r)(39-r(9+2r))+h(2-r)(r(33+6r-4r^{2})-54)}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})}, \\\dfrac{(2-r)(2a(3-r)(1-r)(3+r)+h(30-r(9+(3-r)r)))}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})} \end{array}} \right)$ $\left( {\begin{array}{l} \dfrac{a}{2(2-r)(1+r)}, \\ \dfrac{a}{2(2-r)(1+r)}\end{array}} \right)$
$\pi_{m}^{\ast } $ $\dfrac{h^{2}(2-r)^{2}D-4ahE+4a^{2}K}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})^{2}}$ $\dfrac{a^{2}(1-r)}{(r+1)(2-r)^{2}}$
$\pi_{b}^{\ast } $ $\dfrac{h^{2}(2-r)^{2}A-2ahB+a^{2}C}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})^{2}}$ $\dfrac{a^{2}(1-r)}{(r+1)(2-r)^{2}}$
The Dynamic ContractThe Commitment Contract
$\left( {w_{1}^{\ast } , w_{2}^{\ast } } \right)$ $\left( {\begin{array}{l} \dfrac{2a(3-r)^{2}(3-2r-r^{2})-h(12-24r+9r^{2}+2r^{3}-r^{4})}{102-81r+9r^{2}+8r^{3}-2r^{4}}, \\ \dfrac{(2-r)(2a(3-r)(1-r)(3+r)+h(30-r(9+(3-r)r)))}{102-81r+9r^{2}+8r^{3}-2r^{4}}\end{array}} \right)$ $\left( {\dfrac{a(1-r)}{2-r}, \dfrac{a(1-r)}{2-r}} \right)$
$\left( {p_{1}^{\ast } , p_{2}^{\ast } } \right)$ $\left( {\begin{array}{l} \dfrac{a(156-153r+21r^{2}+16r^{3}-4r^{4})-h(2-r)(6-9r+r^{3})}{2(102-81r+9r^{2}+8r^{3}-2r^{4})}, \\ \dfrac{a(138-r(135-r(23+2r(7-2r)))) +h(2-r)(30-r(9+(3-r)r))}{2(102-81r+9r^{2}+8r^{3}-2r^{4})} \end{array}} \right)$ $\left( {\dfrac{a}{2(2-r)}, \dfrac{a}{2(2-r)}} \right)$
$I^{{\rm \ast }}$ $\dfrac{a(30-39r+8r^{2}+r^{3})-h(2-r)^{2}(30-9r-3r^{2}+r^{3})}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})}$ 0
$\left( {Q_{1}^{\ast } , Q_{2}^{\ast } } \right)$ $\left( {\begin{array}{l} \dfrac{2a(1-r)(39-r(9+2r))+h(2-r)(r(33+6r-4r^{2})-54)}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})}, \\\dfrac{(2-r)(2a(3-r)(1-r)(3+r)+h(30-r(9+(3-r)r)))}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})} \end{array}} \right)$ $\left( {\begin{array}{l} \dfrac{a}{2(2-r)(1+r)}, \\ \dfrac{a}{2(2-r)(1+r)}\end{array}} \right)$
$\pi_{m}^{\ast } $ $\dfrac{h^{2}(2-r)^{2}D-4ahE+4a^{2}K}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})^{2}}$ $\dfrac{a^{2}(1-r)}{(r+1)(2-r)^{2}}$
$\pi_{b}^{\ast } $ $\dfrac{h^{2}(2-r)^{2}A-2ahB+a^{2}C}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})^{2}}$ $\dfrac{a^{2}(1-r)}{(r+1)(2-r)^{2}}$
[1]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[2]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[3]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[4]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[5]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[6]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[7]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[8]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[9]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[10]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[11]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[12]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[13]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[14]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[15]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (233)
  • HTML views (595)
  • Cited by (0)

Other articles
by authors

[Back to Top]